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Financial Applications of Stable Distributions

J. Huston McCulloch

Life is a gamble, at terrible odds;
If it were a bet, you wouldn’t take it.

Tom Stoppard, Rosenkrantz and Guildenstern are Dead

1. Introduction

Financial asset returns are the cumulative outcome of a vast number of pieces of
information and individual decisions arriving continuously in time. According to
the Central Limit Theorem, if the sum of a large number of iid random variates
has a limiting distribution after appropriate shifting and scaling, the limiting
distribution must be a member of the stable class (Lévy 1937, Zolotarev 1986: 6).
It is therefore natural to assume that asset returns are at least approximately
governed by a stable distribution if the accumulation is additive, or by a log-
stable distribution if the accumulation is multiplicative.

The Gaussian is the most familiar and tractable stable distribution, and

therefore either it or the log-normal has routinely been postulated to govern asset ...

returns. However, returns are often much more leptokurtic than is consistent with
normality. This naturally leads one to consider also the non-Gaussian stable
distributions as a model of financial returns, as first proposed by Benoit Man-
delbrot (1960, 1961, 1963a,b).

If asset returns are truly governed by the infinite-variance stable distributions,
life is fundamentally riskier than in a Gaussian world. Sudden price movements
like the 1987 stock market crash turn into real-world possibilities, and the risk
immunization promised by “programmed trading” becomes mere wishful
thinking, at best. These price discontinuities render the arbitrage argument of the
celebrated Black-Scholes (1973) option pricing model inapplicable, so that we
must look elsewhere in. order to value options.

Nevertheless, we shall see that the Capital Asset Pricing Model works as well in
the infinite-variance stable cases as it does in the normal case. Furthermore, the
Black-Scholes formula may be extended to the non-Gaussian stable cases by
means of a utility maximization argument. Two serious empirical objections that
have been raised against the stable hypothesis are shown to be inconclusive.
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394 J. H. McCulloch

Section 2 of this paper surveys the basic properties of univariate stable dis-
tributions, of continuous time stable processes, and of multivariate stable dis-
tributions. Section 3 reviews the literature on portfolio theory with ‘stable
distributions, and extends the CAPM to the most general MV stable case. Section
4 develops a formula for pricing European options with log-stable uncertainty
and shows how it may be applied to options on commodities, stocks, bonds, and
foreign exchange rates. Section § treats the estimation of stable parameters and
surveys empirical applications for returns on various assets, including foreign
exchange rates, stocks, commodities, and real estate. Empirical objections. that
have been raised against the stable hypothesis are considered, and alternative
leptokurtic distributions that have been proposed are discussed.

2. Basic properties of stable distributions

2.1. Univariate stable distributions

Stable distributions S(x; «, B, c, §) are determined by four parameters. The location
parameter é € (—o0, 00) shifts the distribution to the left or right, while the scale
parameter c € (0,00) expands or contracts it about 4, so that

S(x;ot,ﬂ,c,&)=S((x—(5)/c;oc,ﬁ,l,0) . (1)

We will write the standard stable distribution function with shape parameters « and
B as Sup(x) = S(x; , B, 1,0), and use s(x; a, B, ¢, ) and s4(x) for the corresponding
densities. If X has distribution S(x;a, 8, c, 8), we write X ~ S(a, B, ¢, ).

The characteristic exponent a € (0,2] governs the tail behavior and therefore
the degree of leptokurtosis. When o =2, a normal distribution results, with
variance 2¢?. For o < 2, the variance is infinite. When a > 1, EX = §, but if & < 1,
the mean is undefined. The case « = 1,8 = 0 gives the Cauchy (arctangent) dis-
tribution.

Expansions due to Bergstrom (1952) imply that as x | oo,

Sup(—x) ~ (1 — ﬁ)r—S‘lsinF;x—“ ,

1= Sap(x) ~ (14 f) L gin x|
4 2
When o < 2, stable distributions therefore have one or more “Paretian’ tails that
behave asymptotically like x™* and give the stable distributions infinite absolute
population moments of order greater than or equal to «. In this case, the skewness
parameter B € [—1,1] indicates the limiting ratio of the difference of the two tail
- -probabilities to- their sum. We here follow Zolotarev (1957) by defining 8 so that
B > 0 indicates positive skewness for all «. If = 0, the distribution is symmetric
stable (SS). As a T 2, B loses its effect and becomes unidentified.
Stable distributions are defined most concisely in terms of their log char-
acteristic functions: ’

2)
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log Ee = idt + '/’a,ﬁ(Ct) ) 3)
where
_ [ —ltP[t —ipsign(r) tanma/2] , a# 1,
Yo p(t) = { —|¢|[1 +iBZ sign()logld] , a=1 (4)

is the log c.f. for Saﬁ(x)l. The stable distribution and density may be computed
either by using Zolotarev’s (1986: 74, 68) proper integral representations, or by
evaluating the inverse Fourier transform of the c.f. DuMouchel (1971) tabulates
the stable distributions, while Holt and Crow (1973) tabulate and graph the
density.? See also Fama and Roll (1968) and Panton (1992). A fast numerical and
reasonably accurate approximation to the SS distribution and density for « €
[0.84, 2.00], has been developed by McCulloch(1994b).

The formulas for S,s(x) are calculable for a > 2 or || > 1, but the resulting
function is not a proper probability distribution since one or both tails will then
lie outside [0,1], as may be seen from (2). Stable distributions are therefore con-
strained to have « € (0,2] and g € [-1,1].

Let X ~ S(«, B, c,d) and a be any real constant. Then (3) implies

aX ~ S(a,sign(a)p,|alc,ad) . (5)

Let X, ~ S(«, By, c1,61) and X, ~ S(a, B,,¢2,0;) be independent drawings from
stable distributions with a common «. Then X; =X +X> ~ S(«, B3,¢3,03),
where

g=ci+c, (6)
By = (Bict + Bach)/ <5 (7

5e = o1+ 0y, # 1 (8)
37 01 + 82 + 2(Bscsloges — Brerloger — Pacaloger),a =1 .

When B, = B,, B; equals their common value, so that x3 has the same shaped
distribution as x; and x,. This is the “stability” property of stable distributions
that leads directly to their role in the CLT, and makes them particularly useful in
financial portfolio theory. If B; # B, B; lies between B, and B,.

For « <2 and B> —1, the long upper Paretian tail makes EeX infinite.
However, when X ~ S(a, —1,¢,8), Zolotarev (1986: 112) has shown that

! (3) follows DuMouchel (1973a) and implies (1) and (5). Samorodnitsky and Taqqu (1994),
following Zolotarev (1957), use (4), but give the general log c.f. as iur + c*Yop(t). This is equivalent to
(3) for a # 1, with u = . For « = 1, however, their u becomes 6 — (2/m)Bclogc. McCulloch (1986)
erroneously attributes to this “u” formulation the properties of (3). See McCulloch (in press b) for
details.

2 Holt and Crow, following the 1949 work of Kolmogorov and Gnedenko, reverse tpe sign on f§ .in
(4) for a # 1, with the unfortunate but easily corrected result that their “f”> 0 indicates negalive
skewness and vice-versa, unless « = 1. Cf Hall (1981).
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_ [ o—c"sec(B), a#1
logEeX_{(5+%clogc, a=1. ®)

This formula greatly facilitates asset pricing under log-stable uncertainty.?

A simulated stable r.v. may be computed directly from a pair of independent
uniform pseudo-random variables without using the inverse cdf by the method of
Chambers, Mallows and Stuck (1976).4

2.2. Continuous time stable processes

Because stable distributions are infinitely divisible, they are particularly attractive
for continous time modeling (Samuelson 1965: 15-16; McCulloch 1978). The
stable generalization of the familiar Brownian motion or Wiener process is called
an a-Stable Lévy Motion, and is the subject of two recent monographs, by Sa-
morodnitsky and Taqqu (1994) and Janicki and Weron (1994). Such a process is a
self-similar fractal in the sense of Mandelbrot (1983). In Peters’ (1994) termi-
nology, a fractal distribution is thus a stable distribution.

A standard a-Stable Lévy Motion &(2) is a continuous time stochastic process
whose increments &(7+ Af) — &(¢) are distributed S(a, B, A% 0) for « # 1 or
S(1,B,At,(2/n)BAtlogAr) for a=1, and whose non-overlapping incre-
ments are independent. Such a process has infinitessimal increments
d¢(t) = &(r+ dr) — &(1), with scale df'/®. The process itself may then be recon-
structed as the integral of these increments:

£ = ¢0)+ | de) .

The more general process z(f) = co&(t) + ot has scale ¢y over unit time intervals
and, for « # 1, drift § per unit time.

Unlike a Brownian motion, which is almost surely (a.s.) everywhere contin-
uous, an a-Stable Lévy Motion is a.s. dense with discontinuities. ‘Applying(2)to
S(a, B, car, 0) (cf. egs. (18)—(19) of McCulloch 1978), the probability that dz > x is

kuﬂ<i) = kypcix%dt ,  where (10)
Cdt

r .
kaﬂ=(l+ﬂ)$sm£; . (11)

3 The author is grateful to Vladimir Zolotarev for confirming that his Theorem 2.6.1 is, through a
reparameterization, equivalent to (9). When o = 2, (9) becomes the familiar formula log Ee¥ =
u+a?/2.

4 A call to IMSL subroutine GGSTA, which is based on their method, generates a simulated
stable variate with argument BPRIME equal to our f,c =1, and { = 0, where { =4+ fc tan(na/2)
fora#1and ¢ =6 fora= 1, rather than 6 = 0. See Zolotarev (1957: 454, 1987:11) and McCulloch
(1986: 1121-26, in press b) concerning this shift. See also Panton (1989) for computational details
concerning the CMS paper.

e et ———a .
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Eq. (10) in turn implies that values of dz greater than any threshhold xo > 0 occur
at rate

A= kaﬂ(co/xo)“ , (12)
and that conditional on their occurrence, they have a Pareto distribution:
P(dz < x|dz > xp) = 1 — (xo/x)*, x> xp . (13)

Likewise, negative discontinuities dz < —xq also have a conditional Pareto dis-
tribution, and occur at a rate determined by (12), but with &, replaced by k, _s.
In the case « = 2, k,p = 0, so that discontinuities a.s. never occur. With a < 2, the
frequency of discontinuities greater than x, in absolute value approaches infinity
as xo | 0. If B = +£1, discontinuities a.s. occur only in the direction of the single
Paretian tail.

Because the scale of A& falls to 0 as Az | 0, an a-Stable Lévy Motion is ev-
erywhere a.s. continuous, despite the fact that it is not a.s. everywhere continuous.
That is to say, every individual point ¢ is a.s. a point of continuity, even though on
any finite interval, there will a.s. be an infinite number of points for which this is
not true. Even though they are a.s. dense, the points of discontinuity a.s. con-
stitute only a set of measure zero, so that with probability one any point chosen at
random will in fact be a point of continuity. Such a point of continuity will a.s. be
a limit point of discontinuity points, but whose jumps approach zero as the point
in question is approached.

The scale of A¢/At is (At)('/“)_', so that if o > 1, &(r) is everywhere a.s. not
differentiable, just as in the case of a Brownian motion. If a < 1,£(f) is every-
where a.s. differentiable, though of course there will be an infinite number of
points (the discontinuities) for which this will not be true.

The discontinuities in an a-Stable Lévy Motion imply that the bottom may
occasionally fall out of the market faster than trades can be executed, as occurred,
most spectacularly, in October of 1987. When such events have a positive prob-
ability of occurrence, the portfolio risk insulation promised by “programmed
trading” becomes wishful thinking, at best. Furthermore, the arbitrage argument
of the Black-Scholes model (1973) cannot be used to price options, and options
are not the redundant assets they would be if the underlying price were con-
tinuous.

2.3. Multivariate stable distributions

Multivariate stable distributions are in general much richer than MV normal
distributions. This is because “iid” and “spherical” are not equivalent for « < 2,
and because MV stable distributions are not in general completely characterized
by a simple covariation matrix as are MV normal distributions. If x; and x; are iid
stable with « < 2, their joint distribution will not have circular density contours.
Near the center of the distribution the contours are nearly circular, but as we
move away from the center, the contours have bulges in the directions of the axes
(Mandelbrot 1963b: 403).
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Let z be an mx1 vector of iid stable random variables, each of whose com-
ponents is S(a,1,1,0), and let 4 = (aj) be a d x m matrix of rank d < m. The
d x 1 vector x = Az then has a d-dimensional MV stable distribution with atoms
in the directions of each of the columns a; of 4. If any two of these columns have
the same direction, say a; = Aa; for some 1 > 0, they may, with no loss of gen-
erality, be merged into a single column equal to (1 + l"‘)l/ “ay, by (5) and (6). Each
atom will create a bulge in the joint density in the direction of a;. If the columns
come in pairs with opposite directions but equal norms, x will be SS.

The (discrete) spectral representation represents a; as c;s;, where ¢; = ||aj|| and
§; = a;/c; is the point on the unit sphere S; C R? in the direction of a;. Then x
may be written

=3 osz (14)
=1
and for o # 1 has log c.f.

log Ee™ =3 "y (1) | (15)
=1
where y, = ¢;* .5
The most general MV stable distributions may be generated by contributions
coming from all conceivable directions, with some or even all of the ¢j in (14)
infinitessimal. Abstracting from location, the log c.f. may then be written

log B! = | iy (/)1 (ds) | (16)

where I is a finite spectral measure defined on the Borel subsets of ;.
In the case d = 2, (16) may be simplified to

2n
log Ee™! = A Yo (550)dI(0) | | (17)

where sy = (cos 6,sin 6)’ is the point on the unit circle at angle 6 and I is a non-
decreasing, left-continuous function with I (0) = 0 and I'(2n) < co. (Cp. Hardin,
Samorodnitsky and Taqqu 1991: 585; Mittnik and Rachev 1993b: 355-56; Wu
and Cambanis 1991: 86.)

Such a random vector x = (x1,x2)" may be constructed from a maximally
positively skewed (f = 1) a-stable Lévy motion ¢(0), whose iid increments d¢(6)
have zero drift and scale (d6)'/*, by

_ [ (dr(8))/*de(6) 8
x—/o SQ—W . ( )

° Because the & of (3) is not additive for a =1, B # 0 (see (8)), the formulas in this section require
modification in this special case.
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(Cp. Modarres and Nolan 1994.) This integrand has the following interpretation:
If I''(0) exists, 6 contributes sg(I" (0))1/ *d¢(0) to the integral; if I instead jumps by
AI' at 6,0 contributes an atom sg(Al)/*Zy, where Z5 = (d6)™"/ *d&(6)
~ S(a,1,1, 0) is independent of d&(#) for all & # 6.

If x has such a bivariate stable distribution, and a = (a;,a,)’ is a vector of
constants,

2n ]/(Z
a’x=/ (a1 cos()-f—azsiné))w)—l/déﬂ (19)
0 (o)’
is univariate stable. By (5) and (6), @'x will have scale determined by
2n
H(dx) = / la1 cos 6 + a sin 6]%dT'(6) . (20)
0

M. Kanter (as reported by Hardin et al. 1991) showed in 1972 that if dI is
symmetric and a > 1,

E(x2lx1) = xo1x1 (21)
where, setting x® = sign(x)|x|* ,
1 2n
Kyl = —— sin O(cos ) 1dr(o) . 22
2n
c“(x,):/ | cos 0]*dT(0) . (23)
A .

The integral in (22) is called the covariation of x; onx;. Hardin et al. (1991)
demonstrate that if dT" is asymmetrical, E(x;|x;) is non-linear in x;, but still is a
simple function involving this x;;. They note that (21) may be valid in the
symmetric cases even for o < 1.

If dI, and therefore the distribution of x, is symmetric, ¥, (s't) in (16) and (17):
may be replaced by ,(s't) = —|s't|*, and d¢(6) in (18) taken to be symmetric. In
this case, the integrals may be taken over any half of S,, provided I is doubled.

One particularly important special case of MV stable distributions is the el-
liptical class emphasized by Press (1982: 158, 172-3).% If dI'(s) in (16) simply
equals a constant times ds, all directions will make equal contributions to x. Such
a distribution will, after appropriate scaling to give the marginal distribution
of each component the desired scale, have spherically symmetrical joint density
f(x) = ¢,4(r), for some function ¢,,(r) depending only on r = ||x||, a, and the
dimensionality d of x. The log c.f. of such a distribution must be propor-

8 The particular case presented here is Press’s “order m”= 1. His higher order cases (with h'is
m > 1) are not so useful. In (1972), Press asserted that these were the most general MV symmetric
stable distributions, but in (1982: 158) concedes that this is not the case.




400 J. H. McCulloch

tional to Y,0(/|f|]) = —(¢£)¥>. Such a spherical stable distribution is also called
isotropic.

Press prefers to select the scale factor for spherical MV stable distributions in
such a way that in the standard spherical normal case, the variance of each
component is unity. The univariate counterpart of this would be to replace c in (3)
by 6/2'/*. If this is done, the normalized scale o then equals 2!/%c, and equals the
standard deviation when o = 2.7 Accordingly, Press specifies what we call the
standard normalized spherical stable log c.f. to be

log Ee™" = yo([fl[)/2 = —(¢)/2 . (24)

In the case d = 2 of (17) and (18), the requisite constant value of dI" is, by (23),

2n -1
dr() = (2/ ]cosw|"dcu> do .
0

If z has such a d-dimensional spherical stable distribution, and x = Hz for
some non-singular d x d matrix H, then x will have a d-dimensional (normalized )
elliptical stable distribution with log c.f.

log Eexp(ix't) = —(¢ Zt)/? )2 (25)
and joint density
S0) = 1274 (2 '0)'2) (26)

where X = (0;;) = HH'. Component x; of x will then have normalized scale
o(x;) = a}i/ 2=V *c(x;). 2 thus acts much like the MV normal covariance matrix,
which indeed it is for « = 2. For a > 1, E(x;[x;) exists and equals (0i/0;)x;.8 If X
is diagonal, the components of x will be uncorrelated, in the sense E(x;|x;) =0,
but not independent unless o = 2.

A symmetric stable random variable C with distribution S(,0, c,0) may be
obtained as the product B4%* where A is distributed S(x/2,1,c¢*,0) and B is
distributed S(2, 0, ¢, 0), with ¢* = (cos(na/4))2/“ (Samorodnitsky and Taqqu
1994: 20-21). Furthermore, if B is a spherically distributed d-vector whose
components are S(2, 0, ¢, 0), then C is also a spherically distributed d-vector, with
components that are marginally S(«, 0, c, 0). Setting P(||C|| < r) = P(||B||4%/*< r)
then implies that our density generating function may be computed from a
maximally skewed univariate stable density (see McCulloch and Panton, in
press) as

7 Ledoux and Talagrand (1991: 123) in effect make this substitution in the univariate case. We
follow the traditional parameterization here, except in the MV elliptical case.

8 Wu and Cambanis (1991) demonstrate that var(x;|x;) actually exists in cases like this.
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x 00 r2 o/2— o *
Poa(r) = W/O exp (" 4czxz)x P lsuaa (2 /ct)dx  (27)

where ¢ = 27/ for the Press normalization. (See also Zolotarev (1981))

3. Stable portfolio theory

Tobin (1958) noted that preferences over probability distributions for wealth w
can be expressed by a two-parameter indirect utility function if all distributions
under consideration are indexed by these two parameters. He further demon-
strated that if utility U(w) is a concave function of wealth and this two-parameter
class is affine, i.e. indexed by a location and scale parameter like the stable § and
¢, the indirect utility function ¥V(8, ¢) generated by expected utility maximization
must be quasi-concave, while the opportunity sets generated by portfolios of risky
assets and a risk-free asset will be straight lines. Furthermore, if such a two-
parameter affine class is closed under addition, convex portfolios of assets will be
commensurate using the same quasi-concave indirect utility function. If the class

is symmetrical, even non-convex portfolios, with short sales of some assets, may

be thus compared. The normal distribution of course has this closure property, as
do all the stable distributions (Samuelson 1967).°

Fama and Miller (1972: 259-74, 313-319) show that the conclusions of the
traditional Capital Asset Pricing Model (CAPM) carry over to the special class of
MV SS distributions in which the relative arithmetic return R; = (Pi(t+ 1)
~P;(t))/P;(t) on asset i is generated by the “market model”:

Ri=a;+bM+¢g (28)

where a; and b; are asset-specific constants, M ~ S(«,0, 1,0) is a market-wide
factor affecting all assets, and & ~ S(«,0,c;,0) is an asset-specific disturbance
independent of M and across assets.

Under (28), the returns R = (R, ... Ry) on N assets have an N+ l-atom MV
SS distribution of form (14), generated by

R=a+(b IN)<AZ) , (29)

where @ = (ay,...ay)’, etc. This distribution has N symmetrical atoms aligned
with each axis, along with an N+ 1st extending into the positive orthant.

FM show that when o > 1, diversification will reduce the effect of the firm-
specific risks, as in the normal case, though at a slower rate. They note that if two
different portfolios of such assets are mixed in proportions x and (1-x), the scale

® Owen and Rabinovitch (1983) show that the general class of elliptical distributions also shares
this property. However, except for the elliptical stable distributions, these cannot arise from the
accumulation of iid shocks, and have no compelling rationale.
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of the mixed portfolio will be a strictly convex function of x and therefore
(providing the two portfolios have different mean returns) of its mean return. On
the efficient set of portfolios, where mean is an increasing function of scale,
maximized mean return will therefore be a concave function of scale, as in the
normal case. Given Tobin’s quasi-concavity of the indirect utility function, a
tangency between the efficient frontier and an indirect utility indifference curve
then implies a global expected utility maximum for an individual investor.

When trading in an artificial asset paying a riskless real return Ry is in-
troduced, all agents will choose to mix positive or negative quantities of the risk-
free asset with the market portfolio, as in the normal case. Letting 0 = (6y,...0y)’
represent the shares of the N assets in the market portfolio, the market return will
be given by,

Rn=0R=a,+b,M+s, , (30)

where a,, = 0/a, b, = @b, and ¢,, = 0'c. Thus, (R, R;)’ will have a three-atom BV
SS distribution generated by

Ra) _(bn 1 0\ (Y a1
R:) \b 0 1 N
&
where & = ¢, — 0;¢;. The variability of R,, will be given by

*(Rm) = by, + *(em) (32)

where c*(en) = ) 07c? is the contribution of the firm-specific risks to the risk of
the market portfolio.

The conventional CAPM predicts that the prices of the N assets, and therefore
their mean returns g;, will be determined by the market in such a way that

ER; — Ry = (ERn — Ry)Bcarm » (33)

where the CAPM “B” (not to be confused with the stable “B”) is ordinarily
computed as

Bcapm = CoV(R;,Ry)/var(R,,) . | (34)

This variance and covariance are both infinite for « < 2. However, FM point out
that the market equilibrium condition in fact only requires a) that the market
portfolio be an efficient portfolio and therefore minimize its scale given its mean
return, and b) that in (E(R), ¢(R)) space, the slope of the efficient set at the market
portfolio equal (ER,, — R;)/c(R»). They note that these in turn imply (33), with

1. Oc(Rn)
ﬂCAPM—C(Rm) 39,

(35)

In the finite variance case, (35) yields (34), but the variance and covariance are in
fact inessential.
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In the market model of (28), FM show that (35) becomes!?

bib% ! + 02
Bcapm = TRy (36)

As 0; | 0,c(Rn) | bm, and hence Bcapy — bi/bm. FM did not explore more gen-
eral MV stable distributions, other than to suggest (p. 269) adding industry-
specific factors to (28).

Press (1982: 379-81) demonstrates that portfolio analysis with elliptical MV
stable distributions is even simpler than in the multi-atom model of FM. Let R —
ER have a normalized elliptical stable distribution with log c.f. (25) and NxN
covariation matrix . Then the 2x2 covariation matrix X* of (R,,, Ri)' will be

O"zn Oim _ 0'
where e; is the /" unit N-vector. It can easily be shown that (35) implies
Bcapm = a,»,,,/afn . (38)

In the general symmetric MV stable case, not considered by either Fama and
Miller or Press, x = (R,, — ER,, R; — ER;) will have a bivariate symmetric stable
distribution of the type (17). It then may readily be shown that the Fama-Miller
rule (35) implies

Bcapm = Kim (39)

where x;, = E(R; — ER;|R,, — ER,)/(R,, — ER,,) is as given by Kanter’s formula
(22) above. This generalized formulation of the stable CAPM was first noted by
Gamrowski and Rachev (1994, 1995).

The possibility that o < 2 therefore adds no new difficulties to the traditional
CAPM. However, we are still left with its original problems. One of these is that it
assumes that there is a single consumption good consumed at a single point in
time. If there are several goods with variable relative prices, or several points in
time with a non-constant real interest rate structure, there may in effect be dif-
ferent CAPM f’s for different types of consumption risk.

A second problem with the CAPM is that if arithmetic returns have a stable
distribution with « > 1 and ¢ > 0, there is a positive probability that any in-
dividual stock price, or even wealth and therefore consumption as a whole, will go
negative. Ziemba (1974) considers restrictions on the utility function that will
keep expected utility and expected marginal utility finite under these circum-
stances, but a non-negative distribution would be preferred, given free disposal
and limited liability, not to mention the difficulty of negative consumption. A
further complication is that it is more reasonable to assume that relative, rather
-than-absolute, -arithmetic returns are homoskedastic over time. Yet if relative one-

1% This follows immediately from their (7.51), when the “efficient portfolio” considered there is the
market portfolio.
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period arithmetic returns have any iid distribution, then over multiple time pe-
riods they will accumulative multiplicatively, not additively as required to retain a
stable distribution.

A normal or stable distribution for logarithmic asset returns, log(P;(z+ 1)
/Pi(t)), keeps asset prices non-negative, and could easily arise from the multi-
plicative accumulation of returns. However, the log-normal or log-stable is no
longer an affine two-parameter class of distributions, and so Tobin’s demon-
stration of the quasi-concavity of the indirect utility function may no longer be
invoked. Furthermore, while the closure property of stable distributions under
addition implies that log-normal and log-stable distributions are closed under
multiplication, as may take place for an individual stock over time, it does not
imply that they are closed under addition, as takes place under portfolio forma-
tion. A portfolio of log-normal or log-stable stocks therefore does not necessarily
have a distribution in the same class. As a consequence, such portfolios may not
be precisely commensurate in terms of any two-parameter indirect utility func-
tion, whether quasi-concave or not.

Conceivably, two random variables might have a joint distribution with log-
stable marginals, whose contours are somehow deformed in such a way that linear
combinations of them are nevertheless still log-stable. However, Boris Mityagin
(in McCulloch and Mityagin 1991) has shown that this cannot be the case if the
log-stable marginal distributions have finite mean, i.e. &« =2 or fp = —1. This
result makes it highly unlikely that the infinite mean cases would have the desired
property, either.

In the Gaussian case, the latter set of problems has been avoided by focussing
on continuous time Wiener processes, for which negative outcomes may be ruled
out by a log-normal assumption, but for which instantaneous logarithmic and
relative arithmetic returns differ only by a drift term governed by It6’s lemma.
With o < 2, however, the discontinuities in continuous-time stable processes
make even instantaneous logarithmic and relative arithmetic returns behave
fundamentally differently.

It therefore appears that the stable CAPM, like the Gaussian CAPM, provides
at best only an approximation to the equilibrium pricing of risky assets. There is,
after all, nothing in theory that guarantees that asset pricing will actually have the
simplicity and precision that was originally sought in the two-parameter asset
pricing model.

4. Log-stable option pricing''
An option is a derivative financial security that gives its owner the right, but not
the obligation, to buy or sell a specified quantity of an underlying asset at a

contractual price called the striking price or exercise price, within a specified
period of time. An option to buy is a call option, while an option to sell is a pur

' This section draws heavily on, and supplants, McCulloch (1985b).
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option. If the option may only be exercised on its maturity date it is said to be
European, while if it may be exercised at any time prior to its final maturity it is
said to be American. In practice, most options are “American,” but “European”
options are easier to evaluate, and under some circumstances the two will have
equal value.

Black and Scholes (BS; 1973) find a precise formula for the value of a Eu-
ropean option on a stock whose price on maturity has a log-normal distribution,
by means of an arbitrage argument involving the a.s. everywhere continuous path
of the stock price during the life of the option. Merton (1976) noted early on that
deep-in-the money, deep-out-of-the money, and shorter maturity options tend to
sell for more than their BS predicted value. Furthermore, if the BS formula were
based on the true distribution, implicit volatilities calculated from it using syn-
chronous prices for otherwise identical options with different striking prices
would be constant across striking prices. In practice, the resulting implicit vola-
tility curve instead often bends up at the ends, to form what is often referred to as
the volarility smile (Bates 1996). This suggests that the market, at least, believes
that large price movements have a higher probability, relative to small price
movements, than is consistent with the log-normal assumption of the BS formula.

The logic of the BS model cannot be adapted to the log-stable case, because of
the discontinuities in the time path of an a-stable Lévy process.!? Furthermore if
the log stock price is stable with o < 2 and f > —1, the expected payoff on a call is
infinite. This left Paul Samuelson (as quoted by Smith 1976: 19) “inclined to
believe in [Robert] Merton’s conjecture that a strict Lévy-Pareto [stable] dis-
tribution on log($*/S) would lead, with I < « < 2, to a 5-minute warrant or call
being worth 100 percent of the common.” Merton further conjectured (1976:
127n) that an infinite expected future price for a stock would require the risk free
discount rate to be infinite, in order for the current price to be finite.

We show below that these fears are unfounded, even in the extreme case o < 1.
Furthermore, the value of European options under generalized log-stable un-
certainty may be evaluated using fundamental expected utility maximization
principles, rather than the BS arbitrage argument or even risk-neutrality.

4.1. Spot and forward asset prices

Let there be two assets, 4; and A,, that give a representative household utility
U(41, 4,), with marginal utilities U, and Us. Let

St =1 /Uj (40)

"2 Rachev and Samorodnitsky (1993) attempt to price a log-symmetric stable option, using a
hedging argument with respect to the directions of the jumps in an underlying a-stable Lévy motion,
but not with respect to their magnitudes. Furthermore, their hedge ratio is computed as a function of
.the still unobserved magnitude of the jumps. These drawbacks render their formula less than sat-
isfactory, even apart from its difficulty of calculation. Jones (1984) calculates option values for a
compound jumpy/diffusion process in which the jumps, and therefore the process, have infinite var-
lance, but this is neither a stable nor a log-stable distribution.
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be the random spot price of A4, in terms of 4; at future time 7. If log U; and log U,
are both stable with a common characteristic exponent, then log Sy will also be
stable, with the same exponent. It will be apparent from context whether “S”
represents the spot price of a security, as generally used in the option pricing
literature, or a stable c.d.f.

Let F be the forward price in the market at present time 0 on a contract to
deliver 1 unit of A, at time 7, with unconditional payment of F units of 4; to be
made at time 7. The expected utility from a position of size ¢ in this contract is
EU(A, — ¢F, A + ¢). Maximizing over ¢ and imposing the equilibrium condition
e =0 yields

F =EU,/EU; . (41)

The expectations in (41) are both conditional on present (time 0) information.

In order for the EU; to be finite when the log U; are stable with a < 2, the latter
must both be maximally negatively skewed, i.e. have f = —1, per (9). We pres-
ently see no alternative but to make this assumption in order to evaluate log-
stable options. However, this restriction does not prevent log St from being in-
termediately skew-stable, or even SS, since log ST may receive an upper Paretian
tail from U,, as well as a lower Paretian tail from U;, and have intermediate
skewness governed by (7).

Let uy ~ S(a,+1,¢1,6,) and uy ~ S(a, +1, ¢2, 52) be independent asset-specific
maximally positively skewed stable variates contributing negatively to log U, and
log U,, respectively. In order to add some generality, let u3 ~ S(a, +1,¢3,03) be a
common component, contributing negatively and equally to both log U; and
log U, and which is independent of u; and u, so that

logUy = —uy —us3 (42)

logU; = —up —u3 . (43)
Let (a, B, ¢, 6) be the parameters of

logSr =u1 —uy . (44)

We assume that «, 8, c, and F are known, but that §, ¢y, ¢2, c3, 81, 52, and 63 are
not directly observed. We have, by (5)-(8),

5:51——52,“751, (45)
A=tk (46)
et = ¢t — % . (47)

We will return to the case « = 1, but for the moment assume « # 1.
Equations (46) and (47) may be solved for
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a1 = ((1+8)/2) %,

& =((1-B)/2)"% . )
Using Zolotarev’s formula (9) and setting 0 = na/2, we have

EU; = e o 0(ete)secd = 1,2, (49)
so that (41) gives us

F = hi—rt(e—c)sectd _ o+t sectd (50)

If B = 0 (because ¢, = c), (50) implies log F = Elog Sr. This special case does not
require logarithmic utility, but only that U; and U, make equal contributions to
the uncertainty of Sr.

4.2. Option pricing N

Let C be the value, in units of 4; to be delivered unconditionally at time 0, of a
European call on 1 unit of asset 4> to be exercised at time 7T, with exercise
(striking) price X. Let r; be the default-free interest rate on loans denominated in
A, with maturity 7. C units of 4; at time 0 are thus marginally equivalent to C
exp(r1T) units at T.

If S; > X at time T, the option will be exercised. Its owner will receive 1 unit of
A,, in exchange for X units of 4;. If S < X, the option will not be exercised. In
either event, its owner will be out the interest-augmented C exp(r T) units of A4,
originally paid for the option. In order for the expected utility gain from a small
position in this option to be zero, we must have

/ (Uy — XUy)dP(Uy, Uy) —Ce"T/ Uidp(Uy,Us) =0 (51)
Sr>X all Sy

or, using (41),

F X
C= e"‘T[—L—]—/ UpdP(Uy, Uy) — A U\dP(Uy, Uz)] .
Sr>X

2 Uy Js;>x
(52)

In the above, P(U;, U,) represents the joint probability distribution for U, and
Us. (52) is valid for any joint distribution for which the expectations exist.
It is shown in the Appendix that for our stable model with a # 1, (52) becomes

C = Fe—r|T+C;secoll _Xe—rlT-{-c’l'SCCBIZ , (53)

where, setting S5, = 1 — S,

L = / e 5, (2)S5, ((czz + logg + Bc* sec 0) /cl)dz , (54)

oo
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L= / e 541 (2)Sx1 ((clz - logg — Bc*sec 9) /cz)dz . (55)

o0

Eq. (53) effectively gives C as a function C(X,F,«, B,c,r,T), since ¢; and ¢, are
determined by (48), and 6 = na/2. Note that § is not directly required, since all we
need to know about it is contained in F through (50). The common component of
uncertainty, u3, completely drops out.

Rubinstein (1976) demonstrates that (52) leads to the Black-Scholes formula
when log U; and log U, have a general bivariate normal distribution. Eq. (53)
therefore generalizes BS to the case o < 2.

If the forward price F is not directly observed, we may use the current spot
price S to construct a proxy for it if we know the default-free interest rate r; on
Az-denominated loans, since arbitrage requires

F = Soeln T | (56)

The value P of a European put option giving one the right to sell 1 unit of 4, at
striking price X at future time 7 may be evaluated by (53), along with the put-call
parity arbitrage condition

P=C+(X—-F)enT . (57)

Equations (50) and (53) are valid even for « < 1. When o = 1, (50) and (53)
become

F = e&—(Z/n)ﬂclogc , (58)

C — Fe-nT-2/ne ’ogczll — Xe~nT-(@2/ma logcxl2 , (59)

where ¢ and ¢, are as in (48), but now,

® X 2
I,:/ e s11(2)Sh, czz+logf+;(czlogcz—cllogcl) /cl dz

00
(60)
o0 X 2
L = [oo e—Cle“(z)S” <(C]Z - logf — ;(Cz loge; — ¢ 10g0|))/02>dz

(61)

4.3. Applications

The stable option pricing formula (53) may be applied without modification to
options on commodities, stocks, bonds, and foreign exchange rates, simply by
appropriately varying the interpretation of the two assets 4; and A;.
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4.3.a. Commodities

Let 4; and 4, be two consumption goods, both available for consumption on
some future date 7. 4; could be an aggregate of all goods other than 45. Let r| be
the default-free interest rate on 4;-denominated loans. Let U; and U, be the
random future marginal utilities of 4; and 4,, and suppose that log U; and log U,
have both independent (u; and uy) and common (u3) components, as in (42) and
(43). The price St of 4, in terms of 4, as determined by (40), is then log-stable ‘as
in (44), with current forward price F as in (50). The price C of a call on 1 unit of
A, at time T is then given by (53) above.

Such a scenario might, for example, arise from an additively separable CRRA
utility function

Uldiods) = (A1 + 457, 0> 0, 0 1, (62)

with the physical endowments given by 4; = €"*%,i = 1,2, where v;, v, and v} are
independent stable variates with a common « and § = +1.

4.3.b. Stocks

Suppose now that there is a single good G, which serves as our numeraire, 4,. Let
A, be a share of stock in a firm that produces a random amount y of G per share
at T. Let r; be the default-free interest rate on G-denominated loans with maturity
T. The firm pays continuous dividends, in stock, at rate r, and its stock has no
valuable voting rights before time 7, so that one share for spot delivery is
equivalent to exp(»,T) shares at T. Let Ug be the random future marginal utility
of one unit of G at time 7, and suppose that

log Ug=—-u1 —u3 , (63)

logy =uy—u , (64)

where the u; ~ S(a,+1,¢;, ;) are independent.

The marginal utility of one share is then yUg = exp(—uz — u3), and the stock
price per share using unconditional claims on G as numeraire, St = (yUg)/Us, is
as in (44) above. The forward price of one share, F = E(yUg)/E(Ug), is as in (50)
above. The value of a European call on 1 share at exercise price X is then given by
(53). If the forward price of the stock is not directly observed, it may be con-
structed from ry, r,, and the current spot stock price Sy by (56).

Equation (64) states that to the extent there is firm-specific good news (—u,), it
is assumed to have no upper Paretian tail. This means that the firm will produce a
fairly predictable amount if successful, but may still be highly speculative, in the
sense of having a significant probability of producing much less or virtually
nothing at all. To the extent there is firm non-specific good news (u,), the mar-
ginal utility of G, given by (63), is assumed to be correspondingly reduced. De-
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spite this admittedly restrictive scenario, the stock price St can take on a com-
pletely general log-stable distribution, with any permissible «, B, c, or 4.

Note that in terms of expected arithmetic returns, the population equity pre-
mium is infinite for a log-stable stock, unless p=-1.

4.3.c. Bonds"

Now suppose that there is a single consumption good, G, that may be available at
each of two future dates, 7> > 7 > 0. Let A4; and 4, be unconditional claims on
one unit of G at T} and T, resp., and let U; and U, be the marginal utility of G at
these two dates. Let E, U, be the expectation of U, as of 7. As of present time 0,
both U; and E U, are random. Assume logU; = —u; — u3 and logE U, =
—uy — u3, where the u; are independently S(a,+1,¢;,8;). The price at 7} of a bond
that pays 1 unit of G at T, B(T}, T;) = E U, /Uy, is then given by (44) above, and
the current forward price F of such a bond implicit in the term structure at present
time 0, F = B(0, T»)/B(0, Ty) = EgU>y/EgU; = Eo(Ei12)/ EoU,, is governed by
(50) above.'* The price of a European call is then given by (53) above, where r 118
now the time 0 real interest rate on loans maturing at time 77, and “7” is replaced
by 1.

4.3.d. Foreign exchange rates"

To the extent that real exchange rates fluctuate, they may simply be modeled as
real commodity price fluctuations, as in Subsection 4.3.a above. However, the
purchasing power parity (PPP) model of exchange rate movements provides an
instructive alternative interpretation of the stable option model, in terms of purely
nominal risks.

Let P and P, be the price levels in countries 1 and 2 at future time 7. Price
level uncertainty itself is generally positively skewed. Astronomical inflations are
easily arranged, simply by throwing the printing presses into high gear, and this
policy has considerable fiscal appeal. Comparable deflations would be fiscally
intolerable, and are in practice unheard of. It is therefore particularly reasonable
to assume that log P and log P, are both maximally positively skewed.

Let u; and u, be independent country specific components of log P; and log P,,
respectively, and let u; be an international component of both price levels, re-

13 McCulloch (1985a) uses the results of this section, in the short-lived limit treated below, to
evaluate deposit insurance in the presence of interest-rate risk.

'* This model leads to the Log Expectation Hypothesis logF = ElogB(T\,T;) when §=0.
McCulloch (1993) demonstrates with a counterexample that the 1981 claim of Cox et al., that this
necessarily violates a no-arbitrage condition in continuous time with « = 2, is invalid. The requisite
forward price Fmay be computed as exp(r; T; — R,T), where R, is the time 0 real interest rate on loans
maturing at T5.

15 The present subsection draws heavily on McCulloch (1987), q.v. for extensions. Eq. (12.18) of
that paper contains an error which is corrected in Eq. (56) of the present paper.
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flecting the “herd instincts” of central bankers, that is independent of both u; and
uy, so that log P; = u; +u3,i = 1,2. Let St be the exchange rate giving the time T
value of currency 2 (4;) in terms of currency 1 (4;). Under PPP, Sr=P|/Pyis
then as given in (44) above.

The lower Paretian tail of log X will give the density of X itself a mode (with
infinite density but no mass) at 0, as well as a second mode (unless ¢ is large
relative to unity) near exp(ElogX). Thus log-stable distributions achieve the
bimodality sought by Krasker (1980) to explain the “peso problem,” all in terms
of a single story about the underlying process, requiring as few as three para-
meters (if log-symmetric).

Assuming that inflation uncertainty involves no systematic risk, the forward
exchange rate F must equal E(1/P,)/E(1/P1) in order to set expected profits in
terms of purchasing power equal to zero, and will be determined by (50) above.
Let r, and r, be the default-free nominal interest rates in countries 1 and 2. Then
the shadow price of a European call on one unit of currency 2 that sets the
expected purchasing power gain from a small position in the option equal to zero
is given by (53). The forward price F may, if necessary, be inferred from the
current spot price So by means of covered interest arbitrage (56).

4.3.e. Pseudo-hedge ratio

The risk exposure from writing a call on one unit of an asset can be partially
neutralized (to a first-order approximation) by simultaneously taking a long
forward position on

d(Cexp(riT))
OF
units of the underlying asset. Unfortunately, the discontinuities leave this position

imperfectly hedged if < 2. At the same time, this imperfect ability to hedge
implies that options are not redundant financial instruments.

=e€

c;secell (65)

4.4. Put/call inversion and infout duality

C(X,F,a,B,c,r,T) in equation (53) above may be written as
-nT X
C(X,F,a,B,c,r1,T) =e " FC* —F—,,a,ﬁ,c , (66)

where C*(X/F,1,a,,c) = C(X/F,a B, ¢,0, 1) (cp. Merton 1976: 139). Similarly,
the value of a put on 1 unit of 4; may be written as

X
P(X,F,a, B,c,r,T) =e "TFP* (f ,a, ﬂ,c> , (67)

where, using (57),
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X X
P*('I;’a,ﬂ,c) ~P<Fa17a’ﬁycvo,l)

X X
—-C*(F,a,ﬁ,c)—kf 1. (68)

Now a call on 1 unit of 4, at exercise price X [units 4;/unit 4,] is the same
contract as a put on X units of 4, at exercise price 1/X [units 4,/unit 4,]. The
value of the latter, in units of A4, for spot delivery, is XP(1 /X, 1/F,0,—B,¢c,r, T),
since the forward price measured in units of 4, is 1/F, and since log 1/S7 has
parameters a, —f and c¢. Multiplying by the current spot price Sy so as to give
units of 4, for spot delivery, we have the put-call inversion relationship,

11
) = —_——
C(X,F,a,B,c,r,T) So)G’(X,F,

a, ——ﬁ,c,rz,T) . (69)
Using (57) and (68), this implies the following in/out of the money duality re-
lationship:

X X F
O(F’a7ﬂ7c) =FP*(Y)“)_ﬁvc)
X F X
—FC*(/?,a,—ﬂ,c) ~ZH1 (70)

Puts and calls for all interest rates, maturities, forward prices, and exercise prices
may therefore be evaluated from C*(X/F,a, 8, c) for X/F > 1.

4.5. Numerical option values

Table 1 gives illustrative values of 100 C*(X/F,a, B, c)."® This is the interest-
incremented value, in terms of 4, of a European call on an amount of 4 equal in
value (at the forward price) to 100 units of 4,. E.g., if 4; is the dollar and 4, is a
stock, the table gives the value, in dollars and cents to be paid at the maturity of
the option, of a call on $100 worth of stock.

Panel a of Table 1 holds a and  fixed at 1.5 and 0.0, while ¢ and X/F vary. The
call value declines with X/F, and increases with c. The reader may confirm that
the first and last columns satisfy (70).

Panels 1b—d hold c fixed at 0.1 and allow « and B to vary for three values of X/
F representing “at the money” (in terms of the forward, not spot, price) with X/F
= 1.0; “out of the money” but still on the shoulder of the distribution with X/F
= 1.1; and “deep out of the money” with X/F = 2.0. When « = 2, f has no effect

16 The requisite skew-stable distribution and density may obtained from the tables of McCuiloch
and Panton (in press), though Table 1 was based on cubic interpolation off the earlier tables of
DuMouchel (1971). See McCulioch (1985b) for details. Option values are tabulated extensively in
McCulloch (1984).
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100C*(X /F,2,B,c)
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a)a=15 F=00

X/F

c 0.5 1.0 1.1 2.0
0.01 50.007 0.787 0.079 0.014
0.03 50.038 2.240 0.458 0.074
0.10 50.240 6.784 3.466 0.481
0.30 51.704 17.694 14.064 3.408
1.00 64.131 45.642 43.065 28.262
b)c=01,X/F=1.0

B
o -1.0 -0.5 0.0 0.5 1.0
2.0 5.637 5.637 5.637 5.637 5.637
1.8 6.029 5.993 5.981 5.993 6.029
1.6 6.670 6.523 6.469 6.523 6.670
14 7.648 7.300 7.157 7.300 7.648
1.2 9.115 8.455 8.137 8.455 9.115
1.0 11.319 10.200 9.558 10.200 11.319
0.8 14.685 12.893 11.666 12.893 14.685
¢)c=0.1,X/F=1.1

B
o -1.0 -0.5 0.0 0.5 1.0
20 2.211 2.211 2.211 2.211 2.211
1.8 2.271 2.423 2.590 2.764 2.944
1.6 2.499 2772 3.123 3.510 3.902
14 2.985 3.303 3.870 4.530 5.175
1.2 3912 4.116 4.943 5.957 6.924
1.0 5.605 5.391 6.497 8.002 9.410
0.8 8.596 7.516 8.803 11.019 13.067
d)c=01,X/F=20

B
o -1.0 -0.5 0.0 0.5 1.0
2.0 0.000° 0.000¢ 0.000° 0.000° 0.000¢
1.8 0.000 0.055 0.110 0.165 0.220
1.6 0.000 0.160 0.319 0477 0.634
14 0.000 0.351 0.695 1.032 1.361
1.2 0.000 0.691 1.354 1.991 2.604
1.0 0.000 1.287 2.488 3.619 4.689
0.8 0.000 2.333 4.438 6.372 8.164

Note: ?Actual value 1.803x 10~ rounds to 0.000.
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on the option value, even though the underlying story in terms of the two mar-
ginal utilities is changing.!”
Implicit parameter values may be numerically computed from market option

two quotations used accommodated a range of (1.766, 1.832) for «, and a range of
(0.0345, 0.0365) for ¢. The market clearly did not believe the DM was log-normal
on this arbitrarily chosen date. If asymmetry is not assumed away, three option
values may be used to calculate implicit values of a, B, and c.

4.5. Low probability and short-lived options

Assume X > F and that ¢ i small relative to log(X/F). Holding B constant, ¢,
and c; are then small as well. Equation (2) then implies (see McCulloch 1985b for
details) that the call value C behaves like

Fe™"Te(1 + B)¥(a,X/F) | (71)

where

Y(o,x) =

I'(a)sin@
n

(logx)™ — ax
log(x)

” e‘(C_“‘ldC} ‘ (72)

This function is tabulated in some detail in Table 2. It becomes infinite as x L1,
and 0 as « 1 2. By the put/call inversion formula (69) (with the roles of C and P
reversed), P behaves like

Xe " Te(] — B)¥(«,F/X) . (73)

In an a-Stable Lévy Motion, the scale that accumulates in T time units is
coT/* As T| 0, the forward price F converges on the spot price Sy. Therefore

m(C/T) = Sy(1 + B)caw(a, X /5;) | (74)
m(P/T) = X(1 - B)cz¥(a, Sy/X) | (75)

Eq. (75) has been employed by McCulloch (1981, 1985a) to evaluate the put
option implicit in deposit insurance for banks and thrifts that are exposed to

17 The values for a = 2 reported here Were, as a check, computed independently by the same
numerical procedure used to obtain the sub-Gaussian values, and then checked against the Black-
Scholes formula, with ¢ = V2. Using the approximation | — N(x) = n(x)/x for large x, the BS for-
mula becomes C* = N(d)) — XN(d,)F ~ oN(d,)/(d\d,) for large values of log(X/F)/c, where
dy = —~log(X/F)/e+ 6/2,dy =d, - o,n(x) = N'(x), and Fis determined by (56).
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Table 2
¥(a,x)
x = X/F
a 1001 1.01 102 104 106 110 115 120 140 200 4.00 10.00

200 0.00 0.000 0.000 0000 0000 .000 .000 .000 .000 .0000 .0000 .0000
195 18.10 1962 0989 0492 0324 .190 .124 .091 043 0168 .0062 .0028
190 2643 3.199 1.665 0854 0573 343 227 .169 .082 .0329 .0126 .0059
1.80 28.38 4275 2369 1291 089 .560 382 291 .149 .0633 .0256 .0125
170 23.13 4319 2544 1471 1056 .688 .484 376 .203 .0914 .0391 .0199
1.60 17.01 3916 2448 1.498 1.112 .753 .547 434 246 .1172 .0531 .0282
150 11.93 3365 2227 1441 1.103 .777 .582 471 280 .1411 .0676 .0375
140 822 2812 1966 1.341 1059 .774 596 492 306 .1634 .0827 .0479
130 565 2319 1.707 1225 0995 .753 .597 503 327 .1842 .0985 .0594
120 392 1904 1471 1.106 0923 .724 .589 .505 .343 2039 .1150 .0723
110 277 1.567 1266 0995 0852 .689 .575 .502 .356 .2227 .1325 .0868

100 202 1.300 1.092 0894 0.784 654 .558 496 366 .2411 .1511 .1031 °

0.90 151 1.090 0949 0806 0.722 .619 .541 489 375 2592 .1710 .1215

interest rate risk, using SS ML estimates of the parameters of returns on U.S.
Treasury securities to quantify pure interest rate risk.

5. Parameter estimation and empirical issues

If « > 1, OLS provides a consistent estimator of the stable location parameter 4.
However, it has an infinite variance stable distribution with the same a as the
observations, and has 0 efficiency. Furthermore, expectations proxies based on a
false normal assumption will generate spurious evidence of irrationality if the true
distribution is stable with a < 2 (Batchelor 1981).

5.1. Univariate stable parameter estimation

DuMouchel (1973) demonstrates that ML may be used to estimate the four stable
parameters, and that the ML estimates have the usual asymptotic normality
governed by the information matrix, except in the non-standard boundary cases
a =2 and B = *1. In (1975), he tabulates the information matrix, which may be
used for asymptotic hypothesis testing except in the boundary cases where, as he
points out, ML is actually super-efficient. Monte Carlo critical values of the
likelihood ratio for the non-standard null hypothesis « =2 with a symmetric
stable alternative have been tabulated by McCulloch (in press a). DuMouchel
(1983) suggests that the ML estimator of « is biased downwards when the true « is
near 2.00, but this is not borne out (apart from the effect of the « < 2 boundary
restriction) in larger sample simulations reported by McCulloch (in press a).

In the SS cases, the numerical approximation of McCulloch (1994b) permits
fast computation of the likelihood without resorting to the bracketing procedure
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proposed by DuMouchel. SS ML using an early version of this approximation
was applied to interest rate data in McCulloch (1981, 1985a). Asymmetric stable
ML has been performed by Stuck (1976), using the Bergstrem series, by Feuer-
verger and McDunnough (1981), using Fourier inversion of the log c.f., and by
Brorsen and Yang (1990) and Liu and Brorsen (1995) using Zolotarev’s integral
representation of the stable density. See also the algorithm of Chen (1991), re-
ported and employed by Mittnik and Rachev (1993a). ML linear regression with
stable residuals has been implemented for the SS case by McCulloch (1979) and
for the general case by Brorsen and Preckel (1993). Buckle (1995) and Tsionas
(1995) go beyond ML to explore the Bayesian posterior distribution of stable
parameters.

A much simpler, but at the same time less efficient, method of estimating SS
distribution parameters from order statistics was proposed by Fama and Roll
(1971), and has been widely implemented. This method has been extended to the
asymmetric cases, and a small asymptotic bias in the Fama-Roll estimator of ¢ in
the SS cases removed, by McCulloch (1986). -

A large body of work, following Press (1972), has focussed on fitting the
empirical log c.f. to its theoretical counterpart (3), (4). See Paulson, Holcomb and
Leitch (1975); Feuerverger and McDunnough (1977, 1981a,b); Arad (1980);
Koutrouvelis (1980, 1981); and Paulson and Delehanty (1984, 1985). Practitioners
report a high degree of efficiency relative to the ML benchmark.!8 Mantegna and
Stanley (1995) implement a novel method of estimating the stable index from the
modal density of returns at different sampling intervals.

Stable parameters have been estimated for stock returns by Fama (1965),
Leitch and Paulson (1975), Arad (1980), McCulloch ( 1994b), Buckle (1995), and
Manegna and Stanley (1995); for interest rate movements by Roll (1970),
McCulloch (1985), Oh (1994); for foreign exchange rate changes by Bagshaw and
Humpage (1987), So (1987a,b), Liu and Brorsen (1995), and Brousseau and
Czarnecki (1993); for commodities price movements by Dusak (1973), Cornew,
Town and Crowson (1984), and Liu and Brorsen (in press); and for real estate
returns by Young and Graff (1995), to mention only a few studies.

5.2. Empirical objections to stable distributions

The initial interest in the stable model of financial returns has undeservedly
waned, largely because of two groups of statistical tests. The first group of tests is
based on the observation that if daily returns are iid stable, weekly and monthly
returns must be also be stable, with the same characteristic exponent. Blattberg
and Gonedes (1974), and many subsequent investigators, notably Akgiray and
Booth (1988) and Hall, Brorsen and Irwin (1989), have found that weekly and
monthly returns typically yield higher estimates of « than do daily returns. Such

18 On estimation see also Blattberg and Sargent (1971), Kadiyala (1972), Brockwell and Brown
(1979, 1981), Fielitz and Roselle (1981), Csorgs (1984, 1987), Zolotarev (1986: 217f), Akgiray and
Lamoureux (1987), and Klebanov, Melamed and Rachev (1994).
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evidence has led even Fama (1976: 26-38) to abandon the stable model of stock
prices.

However, as Diebold (1993) has pointed out, all that such evidence really
rejects is the compound hypothesis of iid stability. It demonstrates either that
returns are not identical, or that they are not independent, or that they are not
stable. If returns are not iid, then it should come as no surprise that they are not
iid stable. It is now generally acknowledged (Bollerslev, Chou and Kroner, 1992)
that most time series on financial returns exhibit serial dependence of the type
characterized by ARCH or GARCH models. The unconditional distribution of
such disturbances will be more leptokurtic than the conditional distribution, and
therefore would generate misleadingly low « estimates under a false iid stable
assumption.

Baillie (1993) wrongly characterizes ARCH and GARCH models as “com-
peting” with the stable hypothesis. See also Ghose and Kroner (1995), Groe-
nendijk et al. (1995). In fact, if conditional heteroskedasticity (CH) is present, it is
as desirable to remove it in the infinite variance stable case as in the Gaussian
case. And if after removing it there is still leptokurtosis, it is as desirable to model
the adjusted residuals correctly as it is in the iid case. McCulloch (1985b) and Oh
(1994) thus fit GARCH-like and GARCH models, respectively, to monthly bond
returns by symmetric stable ML, and find significant evidence of both CH and
residual non-normality. Liu and Brorsen (in press) similarly find, contrary to the
findings of Gribbin, Harris and Lau (1992), that a stable model for commodity
and foreign exchange futures returns cannot be rejected, once GARCH effects are
removed. Their observations apply also to the objections of Lau, Lau and
Wingender (1990) to a stable model for stock price returns. De Vries (1991)
proposes a potentially important class of GARCH-like subordinated stable
processes, but this model has not yet been empirically implemented.

Day-of-the-week effects are also well known to be present in both stock market
(Gibbons and Hess 1981) and foreign exchange (McFarland, Pettit and Sung
1982) data. Whether such hebdomodalities are present in the mean or the vola-
tility, they imply that daily data is not identically distributed. It is again as im-
portant to remove these, along with any end-of-the month effects and seasonals
that may be present, in the infinite variance stable case as in the normal case. Lau
and Lau (1994) demonstrate that mixtures of stable distributions with different
scales tend to reduce estimates of a below its true value, whereas mixtures with
different locations tend to increase estimates above the true value.

A second group of tests that purport to reject a stable model of asset returns is
based on estimates of the Paretian exponent of the tails, using either the Pareto
distribution itself (Hill 1975), or the generalized Pareto (GP) distribution (Du-
Mouchel 1983). Numerous investigators, including DuMouchel (1983), Akgiray
and Booth (1988), Jansen and de Vries (1991), Hols and de Vries (1991), and
Loretan and Phillips (1994), have applied this type of test to data that includes
interest rate changes, stock returns, and foreign exchange rates. They typically
have found an exponent greater than 2, and have used this to “reject” the stable
model on the basis of asymptotic tests.
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However, McCulloch (1994b) demonstrates that tail index estimates greater
than 2 are to be expected from stable distributions with « greater than approxi-
mately 1.65 in finite samples of sizes comparable to those that have been used in
these studies. These estimates may even appear to be “significantly” greater than
2 on the basis of asymptotic tests. The studies cited are therefore in no way
inconsistent with a Paretian stable distribution.!®

Several alternative distributions have been proposed to account for the con-
spicuously leptokurtic behavior of financial returns. Blattberg and Gonedes
(1974) and Boothe and Glassman (1987) thus propose the Student’s ¢ distribu-
tions, which may be computed for fractional degrees of freedom, and which, like
the stable distributions, include the Cauchy and the normal. Others (e.g. Hall,
Brorsen and Irwin 1989; Durbin and Cordero 1993) consider a mixture of nor-
mals. Boothe and Glassman (1987) find somewhat higher likelihood for the
Student distribution than for either the mixture of normals or stable, but these
hypotheses are not nested, so that the likelihood ratio does not necessarily have a
x* distribution. Lee and Brorsen (1995) have had some success formally com-
paring such non-nested hypotheses using Cox-like tests. However, such dis-
tributions are intrinsically difficult to differentiate without extremely large
samples, as noted already by DuMouchel (1973b). The choice among leptokurtic
distributions may in the end depend primarily on whatever desirable properties
they may have, in particular divisibility, parsimony, and central limit attributes.
Csorgd (1987) constructs a formal test for one aspect of stability, and fails to
reject it using selected stock price data.

Mittnik and Rachev (1993a) generalize the concept of “stability” beyond the
stability under summation and multiplication that leads to the stable and log-
stable distributions, respectively, to include stability under the maximum and
minimum operators, as well as stability under a random repetition of these ac-
cumulation and extremum operations, with the number of repetitions governed
by a geometric distribution. They find that the Weibull distribution has two of
these generalized stability properties. Since it has only positive support, they
propose a double Weibull distribution (two Weibull distributions back-to-back) as
a model for asset returns. This distribution has the unfortunate property that its
density is, with only one exception, either infinite or zero at the origin. The sole
exception is the back-to-back exponential distribution, which still has a cusp at
the origin. The stable densities, on the other hand, are finite, unimodal, absolutely
differentiable, and have closed support.

5.3. State-space models

Stable state-space models may be estimated using the Bayesian approach of Ki-
tagawa (1987). When there is only one state variable, the marginal retrospective
posterior (filter) distribution of the state variable and the likelihood requires

19 Mittnik and Rachev (1993b: 264-5) similarly find that the Wiebull distribution gives tail index
estimators in the range 2.5-5.5, even though the Weibull distribution has no Paretian tail.
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approximately mn numerical integrations with m nodes, where n is the sample
size. The hyperparameters of the model may then be estimated by ML, and the
marginal full sample posterior (smoother) distribution then computed by another
n numerical integrations. If the disturbances are SS, the density approximation of
McCulloch (1994b) makes these calculations feasible, even on a personal com-
puter, despite the numerous iterations required by the ML step.

Oh (1994) thus estimates an AR(1) time-varying term premium (the state
variable) for excess returns on U.S. Treasury securities. After also adjusting for
pronounced state-space GARCH effects, he finds ML & values ranging from 1.61
to 1.80 and LR statistics (2A log L) for the null hypothesis « = 2 in the range 12.95
to 25.26. These all reject normality at the 0.996 level or higher, using the critical
values in McCulloch (1994b). (See also Bidarkota and McCulloch (1996)).

Multiple state variables greatly increase the number of numerical integrals, and
therefore the calculation time, required for Kitagawa’s approach. However, the
state variable may still be estimated in a reasonable amount of time by instead
using the Posterior Mode Estimator approach of McCulloch (1994a, following
Durbin and Cordero 1993). In many cases the hyperparameters may be estimated
(though without the efficiency of full information ML) by applying pooled ML to
various linear combinations of the data.

Mikosch, Gadrich, Kliippelberg and Adler (1995) consider a standard ARMA
process in which the innovations belong to the domain of attraction of a SS law.
Since they did not have access to a numerical density approximation, they employ
the Whittle estimator, based on the sample periodogram, rather than the more
readily interpretable ML.

5.4. Estimation of multivariate stable distributions

The estimation of multivariate stable distribution parameters is still in its infancy,
despite the great importance of these distributions for financial theory and
practice. Mittnik and Rachev (1993b: 365-66) propose a method of estimating the
general bivariate spectral measure for a vector whose distribution lies in this
domain of attraction. Cheng and Rachev (in press) apply this method to the $/
DM and $/yen exchange rates, with the interesting result that there is considerable
density near the center of the first and third quadrants, as would be expected if a
dollar-specific factor were affecting both exchange rates equally, but very little
along the axes. The latter effect seems to indicate that there are negligible DM- or
yen-specific shocks.

Nolan, Panowska and McCulloch (1996) propose an alternative method based
on ML, which uses the entire data set, whereas the Mittnik and Rachev method
employs only a small subset of the data, drawn from the extreme tails of the
sample. This method does not necessitate the often arduous task of actually
computing the MV stable density (see Byczkowski et al., 1993; Nolan and Rajput,
1995), but relies only on the standard univariate stable density. This method
expressly assumes that x actually has a bivariate stable distribution, rather than
that it merely lies in its domain of attraction.
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Appendix

Derivation of (53) from (52)

In this appendix, we let s;(w;) and Sj(u;) represent s(u;a, +1,¢;,6;) and
S(ui;o,+1,¢,8;), respectively, for i=1,2,3. We have St > X whenever
uy <uy —logX. Then, setting z = (u; — 6,)/c; and Sf=1-5;, we have

oo u—logX oo

/UzdP(U;, U)= / / /e‘“z"'”s] (1)s2(u2)s3(u3) dusdurdu,

S,>X —00 =00 —00
oc o0
= Ee™ /e_“ZSZ(uz) /S| (u1) duydu,
—00 © uy+log X
o N
= Ee™ /e‘“’sz(uz)Sf(uz +logX) duz
—0C
o0
= Ee e /e“zzsal(z)S‘f(czz + 8, +logX) dz
—00
o0

= Ee %% /e‘szsal ()85, <w) dz

Ci
—00

= Ee_“’e‘azll,

where, using (50), /; is as given in (54) in the text. Similarly, but now setting
z=(u —d1)/cr,

oo uj—logX oo

/UldP(Ul, U,)= / / /e'“""ssl(un)Sz(“z)Ss(u3) dusduydu,

Sr>X —00 =00 00
00 up—log X
= Ee™ /e"“‘sl(ul) /Sz(uz) durdu,
—00 —00

= Ee™ / e_“‘sl(ul)Sz(u; - lOgX) duy

o0
= Ee e / e 551 (2)S2(c1z + 8y — log X) dz
—00

= Ee'"3e_‘;‘12,

where 1 is as given in (55). Substituting into (52) yields (53).
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