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THE TAX-ADJUSTED YIELD CURVE
J. HustoN McCuLLocH*

IT HAS BEEN DEMONSTRATED, by Robichek and Niebuhr [8], that tax-
induced bias can substantially alter the shape of the yield curve if it is
constructed from quotations on bonds selling below par. The apparent
before tax yield curve can be upward sloping at the same time that the
tax-adjusted yield curve is downward sloping. Thus, the inclusion of tax
effects can actually reverse qualitative conclusions concerning the direc-
tion in which investors expect interest rates to move under the expecta-
tions hypothesis.

Furthermore, simple before tax term structure estimation does not
satisfactorily explain the market prices of low coupon bonds selling at a
discount, because of the long-term capital gains tax advantage on these
securities. Treating these bonds as outliers is unsatisfactory, since they
constitute the bulk of observations for some maturities.!

The present paper modifies our technique for regression fitting the term
structure of interest rates, described in an earlier paper [4], to eliminate
this tax-induced bias and reconcile observations on high and low coupon
bonds.

I. SEcCURITY PRICES AND THE DiscoUuNT FUNCTION

As in our earlier paper, it is most convenient to begin with the discount
function 8(m). In the present paper, this curve gives the present value of
$1.00 after tax repayable after m years.

If we could ignore tax effects, the price of a bond with par value 100,
coupon rate ¢, and terminal maturity date m would be given by

p = 1008(m) + cf S(uw)du.? (1)

* This paper represents a study done under contract for the U.S. Treasury Department, Office of
Tax Analysis. The author is Assistant Professor of Economics, Boston College, Chestnut Hill, MA
02167. The FORTRAN program which performs the calculations described in this paper belongs to
the public domain. The author is grateful for assistance and helpful suggestions to F. A. Adams, M.
J. Bailey, C. C. Baker, C. L. Mallows, J. S. Meginniss, E. P. Snyder, and A. M. Santomero.

1. Fisher [1] partially adjusts for this effect by including coupon terms in his yield-curve regres-
sion. However, directly fitting the yield curve is not based on the summation princip]e of equation
(1). Weingartner [9] compensates for coupons through a series of approximations in a way that gives
a yield curve similar to our regressnon—produced yield curve in [4]. However, he does not adjust for
tax effects. Williams [10, chapters 10 and 20] gives an algorithm for fitting security prices exactly that
uses the summation principle, although he too makes no adjustment for taxes. McCallum [3] and Pye
[6] treat the effect of capital gains taxation, though not in a term-structure context.

2. As in [4], we assume for the sake of simplicity that coupons arrive in a continuous stream,
instead of in semi-annual installments. We therefore interpret p as the quoted ‘‘and interest’’ price,
rather than as the ‘‘flat” price at which the security actually changes hands. This convention
simplifies the analysis and reduces computation time, but introduces a slight inaccuracy, especially in
the maturities where bills interface with short-term notes and bonds. (This problem was called to my
attention by Allen Lerman.) This difficulty can be easily corrected by replacing the integrals in the
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However, when we take taxes into account, we must use three different
equations, one for bonds selling below par, one for bonds selling above
par, and one for bills.

Let t be the marginal income tax rate, expressed as a fraction of unity,
on ordinary income and let t, be the marginal tax rate on long-term
capital gains income. For most practical purposes, we may assume that t,
is one half t.3

For a bond selling below par, the coupon payments are taxed at the
rate t as they fall due, while the capital gain difference between the face
value of 100 and the purchase price is taxable at t; when the bond is
cashed in at maturity. Therefore, assuming that it is held to maturity, its
price should be

p=cl- t)j:1 8(m)dp + [100 — t,(100 — p)}d(m).* 0]

Under current U.S. tax law, if a bond is purchased above par, the
owner has the option of amortizing the premium. This option, which is
usually exercised, means he may deduct a linearly prorated share of the
premium from his ordinary income each year, instead of taking a long-
term capital loss on redemption. If the bond is callable after m¢ years, the
premium may only be amortized to the call date or the maturity date,
whichever gives a smaller deduction. In the case of securities like U.S.
Treasury bonds, which are callable at par, the maturity date m will
always give a smaller deduction. However, it is customary to assume that
bonds callable at par and selling above par will be redeemed on the call
date. If so, the remaining, unamortized, premium may then be written off
against ordinary income. Taking into account the savings from deducting
the premium from other taxable income, the price of the bond should be

p=[c(l —-t)+tpp— 100)/m]me6([.L)d;L

+ [100 + t(p — 100)(m — m®)/m]&(m°). 3)

Equation (3) can be made valid for non-callable bonds selling above par
by setting m¢ equal to m.?

The discount on a Treasury bill is taxable at ordinary income rates
even if it is held more than six months. The tax is payable in the year in
which it matures. Therefore a bill purchased at p will repay 100 — t(100 —

text with appropriate sums adding the present value of each semi-annual coupon to that of the
principal.

3. Prior to 1970, the maximum rate on long-term capital gains was .25. However, since 1972 the
alternative tax rate for long-term capital gains has been .35, so that the alternative method is seldom
advantageous to any taxpayers but those in the .70 bracket.

4. If the bond has less than six months to go to maturity, formula (2) still gives the value of the
bond to a potential purchaser, but only if t, is set equal to the short-term capital gains tax rate t.

5. Strictly speaking, (3) is only valid for bonds originally issued at par. However, this is approxi-
mately true for all U.S. Treasury bonds.

A tax-induced bias similar to that reported by Robichek and Niebuhr also appears when only
quotations on bonds selling above par are used. However, the bias is not nearly as large in magnitude
as when bonds are selling below par.
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p) after tax at maturity. Its price should then be related to the discount
function by

p = [100(1 — t) + tp]d(m).© “4)

II. REGRESSION FITTING THE DiscoUNT FUNCTION

In order to estimate 8(m) from observations on the prices of n se-
curities, we express it as

s =1+ afim) s)
J=1

where the fj(m) are postulated functions satisfying
f(0) =0 6)

and the a; are unknown parameters to be estimated by a linear regression.
Note that condition (6) forces 8(0) equal to unity. The functional form of
(5) is desirable because it makes (2), (3) and (4) amenable to linear
regression.

The crucial issues of the choice of k and the selection of the f;(m) will
be addressed in a later section. In the examples below, these functions
were chosen so that 8(m) would follow a ‘‘cubic spline,”” a type of curve
that provides great flexibility. However, in the derivations below we will
maintain a high level of generality so that the reader may substitute other
functional forms if he desires.

Using (5), equations (2), (3), and (4) can all be rewritten for the i-th
security in the form

k

bpi — d = ;.-Zi ayleyp; + 8l )

For a bond selling below par, we have
b=1-t (8a)
di = 100(1 — t;) + ¢;(1 — )my (8b)
ey = t.fi(my) 8c)
gy = 100(1 — L) + (1 — O "fwdn. (8d)

For a bond selling above par, we have
bo=1-t (%)
d; = (100 + ¢gme)(1 — t) (9b)
ey = [ty — mOf(me) + { "G Gduym 90)
gy = 100[1 — t(m; — m®)/m]fi(m°) + [c(1 — 1) — 100t/m1]J omlcfj(u)du- 9d)

6. The price of a bill may be determined from its quoted banker’s discount yield r by the familiar
formula

p = 100 — r - DTM/360,

where DTM is the number of days to maturity.
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For a bill, we have

b=1-t (10)
d; = 100(1 — t) (10b)
ey = t fi(my) (10c)
g; = 100(1 — tfj(my). (10d)

Since b;, d;, €;, and g; are computed from c¢;, m;, m¢, t, t;, and our
postulated functions f;(m), we may regard them as known constants for
the purposes of our regression.

Equation (7) will in general not hold exactly when n, the number of
observations, is greater than k, the number of parameters estimated. For
one thing, the value of the security may be different to different inves-
tors. All we know is that it lies above p;> — q and below p;2 + q, where
pi® is the bid price, p; is the asked price, and q is the broker’s fee. (The
value of q is zero for dealer traded U.S. Governments.) Even if we
replace p; by p; = (p;® + pi?)/2 in (7), we would still find an unexplained
residual. As in our earlier paper those errors can be caused by transac-
tions costs, callability, convertibility in the case of some corporates,
announced exchange privileges in the case of some Governments, ineligi-
bility for commercial bank purchase (an important factor prior to the 1951
Treasury-Federal Reserve Accord), default risk, the ability to be surren-
dered at par in payment of estate taxes (true of so-called flower bonds),
and the rigidity imposed by specifying any particular functional form for
the f;(m). However, one major source of error in our earlier model,
namely that caused by the apparent premium on bonds selling below par
and therefore subject to the capital gains tax advantage, should now be
eliminated. There still will be a substantial error due to the fact that not
all investors pay the same marginal tax rates, as we are implicitly assum-
ing. Nevertheless, this error is considerably less than that caused by our
previous assumption that each investor pays no taxes at all. Since trans-
actions costs, as reflected by the bid-asked spread and any brokerage fee,
are easily quantifiable and are one of the most important single sources of
error, we will assume that the standard error of Equation (7)’s discrep-
ancy is proportional to half the spread plus any brokerage fee: v; = (p2 —
pi®)/2 + q. This quantity is the difference between p and the upper or
lower limit (p;2 + q or p;> — q) discussed above. If we divide equation (7)
through by this v;, the errors will therefore all have the same variance o2,
provided the ‘‘p;”” we use is p;. Setting

yi = (bipi — dy)/v; (11
and
Xy = (eybi + &i)/vi, (12)

equation (7) written in matrix form with an error term added then be-
comes

y =Xa + e, (13a)
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where
Cov(e) = 1.7 (13b)

Our first thought would be to estimate a by means of the familiar
ordinary least squares formula

a=X'X)x'y. (14)

Unfortunately, p;, which is responsible for the unexplained variance in
the dependent variable y;, is also used to calculate the supposedly inde-
pendent variables x;;. This implies that 4 is an inconsistent estimator of a.

In order to obtain a consistent estimate of ¢, we may employ the
method of instrumental variables. We define

z; = (100ey + gy)/vi. (15)

This instrumental variable contains no stochastic element, since p; in (12)
has been replaced by the par value of 100. The consistent instrumental
variable estimate of a is

a=Z'XxX)yZvy.® (16)
The variance-covariance matrix of 4 may be estimated consistently by
C=62'X)y"2Z2'ZX'Z)! (17)
where
1 v WA
¢* = — 4 O ~ Xa)'y — Xa). (18)

Note that when the tax rate is zero, z; = Xy, so that the ordinary least
squares and instrumental variables estimates of a coincide.

Using data on U.S. Government bills, notes and bonds for the close of
June 1965 and the close of July 1973, a was estimated using both ordinary
least squares and instrumental variables.® The estimates differed percep-
tibly, but in no case by more than a small fraction of the estimated
standard errors of the 3;, as given by the square roots of the main
diagonal elements of the matrix C defined in (17). In every instance the
discrepancy was well less than one-tenth the estimated standard error.
Such close agreement suggests both that the inconsistency in ordinary
least squares is not serious, and that our instrumental variables Z are
relatively efficient. The reason the inconsistency is so small is probably
that the fit of our regression equation is very tight, compared to that in

7. When dealing with bonds which are not really homogenous in all respects other than coupon
and maturity, some thought might be given to relaxing the assumption of spherical disturbances
made in (13b). For instance, cov(u;, u;) could be assumed equal to .So% if securities i and j had the
same issuer, and 0 otherwise. The a; could then be estimated by Aitken’s formula, or by an
instrumental variables version of Aitken’s formula.

8. See, e.g., Goldberger [2], pp. 284-286.
9. The ordinary income tax rates used were .30 and .50 for 1965, using Salomon Brothers and

Hutzler quotations, and the s-minimizing value of .21 for 1973, using Federal Reserve Bank of New
York composite quotatious.
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other applications that involve potential inconsistency. The economic
content of our equation is simply that the present value of a future dollar
is the same, no matter how it is packaged. We would expect discrepan-
cies to be very small, compared to those in the estimation of the con-
sumption function, for example. Although there would appear to be no
practical objection to the employment of ordinary least squares to esti-
mate (13), at least not for ‘‘small’’ values of n (94 in this case), we have
used the theoretically preferable instrumental variables approach in the
examples given in this paper and in our program for the Treasury.
Figure 1 shows the estimated discount function computed from (5)

1.0

08
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0.2

0.0

0 5 10 15 20
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FIGURE 1
The discount function 8(m), by which after-tax payments are discounted. Based on quotations dated
July 31, 1973 for 94 U.S. Government bills, notes, and bonds, using an ordinary tax rate of 0.19 and a
long term capital gains rate of 0.095. Ten parameters were estimated. The half-tone band extends one
standard error above and below the point estimate. The s of this regression was 2.82.

using estimates of @ based on dealer quotations for 94 U.S. Government
bills, notes and bonds. The quotations used were those of Salomon
Brothers and Hutzler, Inc., dated July 31, 1973, for delivery on August 2,
1973. The tax rates used were t = .19 and t, = .095. The curve was
plotted with a band extending one standard error above and below the
best estimate. However, these errors are so small, relative to the resolu-
tion of the diagram, that the symbol employed to represent the band does
not appear for short maturities.
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III. PREDICTED SECURITY VALUES

Given estimates of the parameters g, the value of a given security can
be estimated by solving (7) for p;:

K
d; + Zﬁjgﬁ

- =1

pp=——7F—

- .
b — z&,ei,
=

This value is the bid-asked mean price the security would command if it
were valued on the same basis as the other securities in the regression.

Table 1 shows predicted prices based on the same regression that
produced the discount function of Figure 1. The table gives p;, pi?, b
and p;, and the weighted error (p; — p;)/v;. The regression used only the
94 securities marked with a ““T’’ in the last column.

The Federal National Mortgage Association 6% of 6/10/77 was
excluded since it is a security of a former U.S. Government Agency,
rather than an actual Treasury issue, and therefore may not be valued on
the same basis as the other securities. Using the discounting factors
appropriate for Treasury securities, our formulas calculate that it would
be worth $.96 per $100 of par value more than its actual bid-asked mean
price, or 1.92 times its half-spread v;. Since a weighted error of 1.92 is
small compared to the average of 2.82 for securities included in the
regression, we may conclude that the market is not discriminating great-
ly, if at all, against this particular issue as compared with actual Treasury
issues.

(19

IV. EstATE TAX BONDS

Most of the older outstanding marketable Treasury bonds are accept-
able at par in payment of estate taxes if owned by the decedent at the
time of his death. These estate bonds, or flower bonds as they are called,
all were issued before 1963. They therefore happen to have coupons
lower than current interest rates, and so are worth less than par. If the
marginal holder of any of these bonds is planning to utilize the estate tax
privilege directly or indirectly by selling it to someone who will exercise
this option, the bonds may command a premium. Except in special cases
when there are bonds without the privilege with the same coupon and
similar maturities, the size of this premium is difficult to measure. Other
bonds with a similar terminal maturity but a higher coupon rate have a
smaller capital gains tax advantage since they sell closer to par. Further-
more, they reflect shorter term interest rates, since the coupons comprise
a larger part of their value. However, our curve fitting technique is
specifically designed to adjust for tax effects while allowing different
discount rates for the coupons and principal. It may therefore be used to
measure the value of this premium.
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The two longest maturity, most deeply discounted flower bonds,
namely the 3’s of 1995 and 3%2’s of 1998, definitely carry a premium and
therefore were excluded from the regression. As may be seen from Table
1, the coupon and principal of these two bonds are worth only about $53,
and yet they are selling for about $70 each. The value of the estate
privilege is therefore about $15. The three next lowest priced estate
bonds, the 3%2’s of 1990, and 4’s of 1993/88, and the 3’s of 1995, appear to
carry premiums of $3.14 to $3.98. Since this size of discrepancy is not
large, relative to the half spread, when compared to that observed for a
few of the other bonds included in the regression, these three were not
excluded. However, this discrepancy probably does represent a true
premium due to the estate feature.

V. THE BoND YiELD CURVE

A frequently asked question that we may answer with our estimated
discount function is, ‘““What coupon rate would a bond with terminal
maturity m have to have in order to sell at par?”’ We call y(m), the
function that answers this question, the ‘‘bond yield curve.”’ Bonds
selling at par (but not necessarily bonds selling at other than par, even in
the absence of taxation) should lie on this curve.

This function must obey the following equation:

a- t)y(m)J ™ 8(w)dp + 1008(m) = 100. (20)
0
Solving for y(m), we get

100[1 — &(m)] . Q1)
(1 - t)];“ 8(w)du

y(m) =

This expression may be estimated, using the estimated discount function
and integrating (5) with respect to m. Figure 2 shows the bond yield
curve corresponding to the discount curve of Figure 1. When a zero tax
rate was tried in place of the 19 per cent rate used for these diagrams, the
curve had the same qualitative shape. However, it was generally lower,
hitting a minimum of 7.16 per cent at 15 years instead of 7.33 per cent,
and turned up more at the long end.

VI. THE PoINT PAYMENT YIELD CURVE AND FORWARD
INTEREST RATES

Although the bond yield curve y(m) is what financiers think of as
“‘the’’ yield curve, economists who are concerned with the relation
between forward interest rates and subsequent spot rates usually prefer
to work in terms of a point payment yield curve m(m) that gives the yield
to maturity on a hypothetical pure discount bond that pays no coupons
prior to final maturity. Early theorists, such as Irving Fisher and Hicks,
simply assumed yields on such bonds could be observed. Later workers,
including Meiselman and Kessel, perforce used observations from the
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FIGURE 2
Bond yield curve y(m), which gives the coupon rate a bond of maturity m would have to have in
order to sell at par. This curve is based on the discount function of Figure I.

bond yield curve except in the short maturities where bills were avail-
able, while commenting that it would be preferable to have pure dis-
count yields. On an after tax basis, this point yield would be given by
— 100 In 8(m)/m, using continuous compounding. However, we are not
always certain just which tax rate is the one to use. In order to make
intertemporal comparisons of forward rates corresponding to this point
yield curve less sensitive to possible error in the estimated tax rate, it is
desirable to convert the point yield to a before tax basis by dividing
through by 1 — t:

_ =100

This curve gives the before tax yield such a hypothetical bond would
have if the interest on it, as reflected by its discount, were taxed at the
ordinary income tax rate as the bond appreciated in value. This does not
correspond to actual tax practice, but then this curve does not corre-
spond to actual securities either. The point payment yield curve may be
estimated by substituting the estimated discount function into (22).

Corresponding to the point payment yield curve is the instantaneous
Sforward rate curve:

_ __ —1008'(m)
Pm) = =" 0am) @
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It can be estimated using the estimated discount function and differentiat-
ing (5) with respect to m. This curve gives the implicit before tax forward
rate on a hypothetical forward loan to begin in m years and end an instant
later, assuming the interest would be taxed at ordinary income rates.
Figure 3 shows the estimated %(m) and p(m) corresponding to Figures 1
and 2. The vertical scale is more compressed than in Figure 2, in order to
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FIGURE 3
Point payment yield cirve n(m) (with stippled band) and instantaneous forward rate curve p(m) (with
hatched band). The bands extend one standard error above and below the point estimates.

fit all the forward rates in. The basic shape of 7(m) can be seen to be very
similar to that of §(m). This is to be expected, since the bond yield curve
is a smoothed version of the point payment yield curve. The high forward
rates at the long end are implied by the upturn in the yield curve in these
maturities. However, the half-tone band extending one standard error
above and below the best estimate curve indicates that these high for-
‘ward rates do not have a high degree of accuracy. Figure 4 shows the
first two years of Figure 3 in greater detail:

As m approaches 0, y(m) and n(m) both approach p(m). Therefore,
although (21) and (22) cannot be evaluated at m = 0, the common value
of y(0) and 1(0) may be calculated from (23). This value may be inter-
preted as a hypothetical ‘‘call money’’ rate.

The mean forward rate on a point payment loan to begin at time m,
and have duration m, (that is, to end at time m; = m; + m,) is given by
averaging together values of p(m):
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FIGURE 4
Detail of the first two years of Figure 3.

r(my, mg) = —— " p(m)dm @4

_ 100 4, 8(my)
(1 - t)m, d(mg)

25

Expression (25) may be estimated using (5).

Mean forward rates, with m, equal to one ‘‘period’’ (usually a week,
month, quarter or year), are what economists usually think of as ‘‘for-
ward interest rates.”” However, a financier might find a ‘‘forward bond
yield,”” b(m,;, m3;) a more useful forward rate concept. This is the coupon
rate a bond issued m; years from now and maturing after m, years (or
mg; = m; + m, years from now) would have to have in order for the
present discounted value of its after-tax payments to just equal the
present discounted value of its par value on its issue date. This means it
must satisfy the following equation:

1008(m,) = b(m,, mg)(1 — t)J:"S(m)dm + 1008(mg). (26)
Solving, we get

100[8(m;) — §(mg)]

b(m,, mg) = -
a- t)JmIS(m)dm

(27
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Under the expectations hypothesis, this forward bond yield is the coupon
rate that the market would expect a bond with maturity m, years to have
to have in order to sell at par if issued m; years from now. If m; = 0, it
becomes identical to the spot bond yield y(m,).

VII. THE VARIANCE-MINIMIZING TAX RATE

One unsatisfactory aspect of fitting the term structure without taking
taxes into account is that it fails to account for the prices of deep
discount bonds. We may measure how closely we have fit the observed
prices by calculating the following expression:

= 1 Npi—D
S_\/n—k; o (28)

This s is the root mean square of the weighted errors shown in Table 1.1°

Of course, not all investors are in the same marginal income tax
bracket. Some are tax-exempt institutions, some are large corporations
paying 48 per cent, and some are individuals paying a variety of personal
income tax rates. Furthermore, investors in different brackets will find
different securities attractive. Individuals in the highest brackets will
probably hold tax-exempt state and municipal bonds. Those in moder-
ately high brackets will prefer deep discounts. Those in low brackets will
be attracted by the high yield on taxables near par.

Nevertheless, if we want one tax rate that best explains the whole
structure of prices for the securities observed, it would make most sense
to use the rate that minimizes s. This s-minimizing tax rate t* may to
some extent be regarded as an effective tax rate, the approximate rate at
which the Treasury recaptures its interest payments when it floats new
debt.!!

For some points in time, s is not very sensitive to t. At the close of
June 1950, for instance, s fell from 20.02 att = 0 to 19.99 at t* = .13. At
that time, all bonds were selling above par, so that the capital gains tax
advantage did not come into play. Instead, the major source of variance
was the ineligibility of some bonds for commercial bank purchase, a
factor not taken into account by our formulas. At such times, an estimate
of t* cannot be regarded as very accurate.

However, when there are many bonds selling at a deep discount with a
small bid-asked spread, s can be very sensitive to t. The close of June
1963, June 1964, June 1965, and March 1966 were such times. At each of

10. When t = 0, s coincides exactly with ¢ from equation (18). In our experience, s has always
been larger than & for t > 0. For t > .50, the difference can become appreciable. As t increases from
0, s and & usually fall off smoothly, pass a minimum, and then rise. By .60, they are usually
considerably larger than their common value at 0.

11. This interpretation is only valid to the extent that the tax rate is not serving as a proxy for
other related factors, such as estate tax features, or (as was pointed out by Fischer Black) call

protection. However, bonds with a conspicuous flower premium may be excluded from the regres-
sion, while the call protection factor is probably small compared with other sources of error.
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these dates, the variance of the residuals (i.e., s?) fell by at least 73 per
cent. Values of t* were found ranging from .22 to .30. For June 1965, s
fell from 11.51 at t = 0 to a respectable value of 3.31 at t* = .27, a
decline of 92 per cent in s%2. These t* values probably give a fairly
accurate indication of the effective marginal tax rate that governs U.S.
Treasury security prices, and the average tax rebate to the Treasury on
its coupon payments.!?

Using quotations for July 31, 1973, s falls from 3.31 at t = 0 to 2.82 at
t* = .19. Since bid-asked spreads on long-term deep discount bonds are
considerably wider than they were in 1965, t is not now as critical a
parameter as formerly.

VIII. MEASUREMENT ERRORS

The parameters a may only be estimated with some uncertainty, be-
cause the fit of our regression is not exact. Therefore the various quan-
tities derived from these parameters are also uncertain. It is worth our
while to have an index of this uncertainty, lest we jump to conclusions.

Given C, the estimated variance-covariance matrix of @, the variance
of a differentiable function (@) may be approximated by the quadratic
form

var Y(@) = w'Cw, (29a)
where
w; = 9P(@)/ 93 (29b)

[2, pp. 122-125]. Standard errors may then be approximated by taking
square roots.

The particular formulas for the variance of our estimates of the dis-
count function and the various forward rate and yield curve concepts
may be derived from their definitions and (29). They are also available
from the author on request.

IX. THE ForM oF THE FUNCTIONS fj(m)

29

A broad family of approximating functions, known as ‘‘splines,’’ are
useful in many curve-fitting applications [7, Vol. II, 123-167; 5]. An
r-degree spline is piecewise an r-degree polynomial, with r — 1 continu-
ous derivatives. Its r-th derivative is therefore a step-function.

If the ‘‘knot’’ points, where the discontinuities in the r-th derivative
occur, are equally spread, the spline will be able to fit equally complex
shapes for all values of the abscissa. If they are unequally spaced, the
spline will be able to fit more complex shapes where the knots are closest

12. These values are in the same range as Pye’s C(0, 1) estimates which equalize the net return on
securities trading at par with that on securities whose coupon rates are 1 to 2 per cent below their
yields [6, 578]. However, Pye obtains higher estimates of the effective marginal tax rate using other
comparisons such as taxables versus tax exempts and moderate discounts versus 1% per cent
exchange notes. His C(0, 1) estimates are most nearly comparable to our estimates, because our
regression gives little weight to the exchange notes and we have not included tax exempts.
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together. Since the high concentration of bill and note maturities at the
short end allows us to distinguish considerably more detailed shape there
in the discount function, and indirectly in the yield and forward curves, a
spline seems ideal to our purpose, provided we space the knots so that an
equal number of issues fall between adjacent knots.

In our earlier paper, a quadratic spline was employed. In the present
paper, we have used a cubic spline, because it gives a smoother shape to
the forward curve. Although we still regard a quadratic spline as satisfac-
tory, it tends to produce an awkward scalloped shape in the forward
curve.

An ordinary polynomial is unsatisfactory when used with quotations
that are bunched at short maturities and sparse at the long end. When a
10-th degree polynomial was used with 1965 data, it over-smoothed at the
short end and failed to pick up a distinct upward slope in the first few
months of the yield curve. On the other hand, it under-smoothed at the
long end. It conformed too closely to the two longest bonds, in such a
way that the resulting discount curve implied forward rates ranging from
—9 up to 57 per cent per annum! A 10-parameter third degree spline, on
the other hand, clearly showed the upward slope at the short end of the
yield curve, and gave credible forward rates, all between 3.5 and 4.5 per
cent. In all fairness to the polynomial, it should be noted that it does a
better job of fitting a pure exponential decay discount function, implied
by artificial data reflecting a perfectly flat yield curve, than does the cubic
spline. It is only with real-world data that the polynomial does worse.

Formulas for the fi(m) which generate a cubic spline are given in
Appendix A.

As in our earlier paper, we set k equal to the nearest integer to the
square root of n. This formula has the desirable properties that both k
and the ratio n/k will become large as n becomes large, giving at once
greater resolution and greater accuracy as more information is added.
For a cubic spline, we must have k at least equal to 3, but ordinarily we
will have well over 9 observations, so this will be no problem.

X. CONCLUSION

Taking the effects of differential taxation of ordinary and long-term
capital gains income into account can reduce. the unexplained variance
when we regression curve-fit the term structure of interest rates by as
much as 92 per cent. The resulting tax-adjusted bond yield curve should
be free of the tax-induced bias discussed by Robichek and Niebuhr, and
should give an accurate estimate of the coupon rate necessary to float
new debt at par. The forward interest rates associated with the point
payment yield curve will also be free from these distortions, which
otherwise could actually reverse inferences about the direction in which
the market expects interest rates to move. By searching over tax rates,
we have found that the effective tax rate that best explains the prices of
U.S. Treasury securities lies somewhere in the range .22 to .30.
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APPENDIX

To define a k-parameter cubic spline, we need to fix k — 1 knot points d;, instead of k
as with the quadratic spline. Assume that the redemption date m; of the n securities are
arranged in ascending order. Set

dy = my + 6(mpy; — my) (A.la)
where
h = greatest integer in &k::%i (A.1b)
a_md
~G—-Dn _
6=0=0 (A.10)

This specification places an equal number of security maturities between adjacent knots.
It sets d; = 0 and di—; = m,.

In order to generate the family of cubic splines relative to these knots, we define for
m< dj._l

fy(m) = 0. (A.2)
For d;-; < m < d;, we define
— _(m—d,)?
fm) = 4G =i (A.3)
When d; < m < d;;,, we define
_c2 ce e* el
fi(m) = % + 5 + 5 —-——————-6(dj+l —3) (A.4a)
where
c=d, - d_, (A.4b)
and
e=m — dj, (A4C)
For dj;; < m, define
f(m) = (A - dyop[ 2 =B =G o 0 5. (A.5)

(Set d;-; = d; = 0 when j = 1.)
The above formulas apply when j < k. When j = k, we define
fy(m) = m, (A.6)

regardless of m.
These formulas may be integrated and differentiated with respect to m in order to
evaluate the bond yield curve and forward curve formulas.!3
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