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SUMMARY

Monthly inflation in the United States indicates non-normality in the form of either occasional big shocks or
marked changes in the level of the series. We develop a univariate state space model with symmetric stable
shocks for this series. The non-Gaussian model is estimated by the Sorenson—Alspach filtering algorithm.
Even after removing conditional heteroscedasticity, normality is rejected in favour of a stable distribution
with exponent 1-83. Our model can be used for forecasting future inflation, and to simulate historical
inflation forecasts conditional on the history of inflation. Relative to the Gaussian model, the stable model
accounts for outliers and level shifts better, provides tighter estimates of trend inflation, and gives more
realistic assessment of uncertainty during confusing episodes. © 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Inflation forecasts are central to macroeconomic analysis. Sargent (1993) suggests simulating
the public’s forecasts as if they had been formed using econometric techniques. A Gaussian
assumption is commonly motivated by the Central Limit Theorem, since economic disturbances
are the sum of a large number of unobserved contributions. However, the Generalized Central
Limit Theorem (Zolotarev, 1986) indicates that such a sum could also have a non-Gaussian
stable distribution. There is evidence that the empirical distributions of inflation rates have thick
tails (e.g. Baillie et al., 1996; Balke and Fomby, 1994; Blanchard and Watson, 1986), making
stable distributions a natural extension. Batchelor (1981) notes that if errors are truly stable,
models built on a false normality assumption can give misleading simulations of the public’s
forecasts of inflation and other macroecoriomic variables.

In this paper, we develop a univariate state space model for the monthly US inflation series
using symmetric stable disturbances. Our model can be used for forecasting future inflation, and
for simulating historical inflation forecasts conditional on the observed history of inflation.
Because the stable model makes more efficient use of the data, it ordinarily gives more precise
forecasts of future inflation.

McCulloch (1996) provides a survey of the financial applications of stable distributions. In
addition to their Central Limit attributes, stable distributions also have the desirable character-
istic that they simplify the long-run forecast error distributions, as described below.
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Both univariate time series and multivariate structural models have been developed in the
literature. A comparison of their relative forecasting performance is made in Fama and Gibbons
(1984) and Hafer and Hein (1990). While the univariate models are commonly simple integrated
moving average (IMA) models, both Hamilton (1985) and Burmeister et al. (1986) use
more elaborate multivariate state space models. The state space models developed by Hamilton
(1985) and Burmeister et al. (1986) fit bivariate Gaussian processes to nominal interest rates and
observed inflation.

The univariate model fit here tentatively ignores interest rates, money supplies, and other
variables that might have some forecasting power. However, Nelson (1972) notes that parsimon-
jous univariate models often do as well as more elaborate structural and multivariate models.

Inflation rates are often subject to sudden changes in level (Barsky, 1987). Markov switching
models have been advocated for modeling such regime shifts (e.g. Hamilton, 1989; Lam, 1990).
Whereas these models limit the number of states to a discrete few, the stable model can account
for a continuum of state values.

We use monthly inflation data from the United States. Our measure of inflation is based
primarily on the CPI-U. However, the CPI-U is generally recognized to have seriously mis-
measured the housing component of the true cost of living prior to its 1983 revision. The Bureau
of Labor Statistics (BLS) CPI-X series recomputes the CPI-U on the post-1983 basis, from June
1967 until its adoption as the official CPI-U in 1983. We, therefore, constructed a CPI-UX series
by linking together the CPI-U from 1953:10 to 1967:6, the CPI-X from 1967:6 to 1983:1, and
again the CPI-U from 1983:1 to 1993:9. The 1967 base year was used for both series, so as to
reduce rounding error. During 1967:6 to 1983:1, the CPI-U shows 8-5 percentage points more
total inflation than does the CPI-X.

The inflation rate was constructed as the first differences of the natural logarithms of the
constructed CPI-UX series, expressed as annualized percentage rates. This gave 479 inflation
observations, from 1953:11 (October—November inflation) to 1993:9. The 1953 starting date
was chosen because of the extensive improvements that were made to the process of constructing
the CPI in the early 1950s (see Cosimano and Jansen, 1988; Barsky, 1987, for a discussion,
and evidence for structural change in the inflation process). The inflation rate was then season-
ally adjusted by subtracting constant seasonal dummies, estimated jointly with a preliminary
Gaussian homoscedastic local level model.

Section 2 implements a simple local level model with homoscedastic stable shocks. Section 3
refines the model to include conditional heteroscedasticity. Section 4 investigates the implications
of the model for inflationary expectancies, conditional on realized inflation. Section 5 concludes
and briefly discusses possible extensions.

2. A HOMOSCEDASTIC LOCAL LEVEL MODEL

We begin with a simple local level model for inflation:
Model 1

y,=x,+¢ ¢g~1iid S,0,c) (1a)
x,=Xx,_y+n, n,~iid. S,0,¢c,) (1b)
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Here, y, is the seasonally adjusted observed inflation, and x, is an unobserved trend inflation. The
¢, shock captures transitory deviations of observed inflation about the trend, and #, captures
permanent shocks that drive the trend inflation. The two shocks are assumed to be serially and
mutually independent. Within the framework of state space models, x, is the state variable, ¢, is
the measurement error, and #, is the signal shock.

A random variable X is said to have a symmetric stable distribution S0, ¢) if its log-
characteristic function can be expressed as:

In E exp(iXt) = idt — | ct|”

The parameters ¢ > 0 and J € (—oo, 00) are measures of scale and location, respectively, and
a € (0, 2] is the characteristic exponent governing the tail behaviour, with a smaller value of «
indicating thicker tails. The stable distribution and density may be evaluated by using Zolotarev’s
(1986, pp. 74, 78) proper integral representations, or by taking the inverse Fourier transform of
the characteristic function. McCulloch (1998) has developed a fast numerical approximation to
the symmetric stable distribution and density that has an expected relative density precision of
10~ for o [0-84, 2]. We therefore restrict ourselves in this paper to symmetric stable
distributions with o in this range for computational convenience. Although asymmetric stable
distributions exist and are well defined, there is no empirical evidence to suggest that asymmetries
are important in the inflation series, once outliers have been accounted for (Balke and Fomby,
1994).

The normal distribution belongs to the symmetric stable family with o =2, and is the only
member with finite variance, equal to 2¢2. In this case, the local level model above is equivalent to
an IMA(1,1) process, with the first-order autocorrelation coefficient restricted between zero and
minus one-half. A number of studies, including Barsky (1987), Ball and Cecchetti (1990), and
Brunner and Hess (1993), identify such a process as describing the time series of US inflation
rates, to at least a first approximation.

For o < 2, a subtle distinction emerges between the local level and IMA(1,1) models. The
present study adheres to the former model, because of its natural interpretability as a slowly
changing regime observed with noise. In doing so, however, we are validly extending the
Gaussian IMA(1,1) literature to the non-Gaussian stable cases.

In the Gaussian case, the Kalman filter provides optimal, linearly adaptive estimates of x, and,
therefore, of future y, in equation (1) above. However, if o < 2, the Kalman filter does not provide
optimal estimates, and indeed has an infinite variance stable distribution. Nevertheless, the
filtering algorithm of Sorenson and Alspach (1971) enables estimation of both the likelihood
function as well as the conditional densities of the state vector under general assumptions about
the distributions of the disturbances.

Let Y,=(,,..., ). The recursive formulae for obtaining one-step-ahead prediction and
filtering densities, due to Sorenson and Alspach, are as follows:

pox, 1Y, = f e, 1%, )P | o) A,y (22)
P(xt I Yt) = P(Yt | xz)p(xz | Y,_l)/P(yt I Y;—I) (2b)
PO Y, ) = f PO, x)p(x, | ¥,y dx 20)
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Finally, the log-likelihood function, conditional on the hyperparameters , c,, and ¢, is given by:

T
log p(y, -+ ¥7) = D _log p(, 1 ¥, y) 3)
=1

These formulae have been applied to non-Gaussian data, and extended to include a smoother
formula, by Kitagawa (1987). (References to the substantial research in non-Gaussian state space
modelling provoked by that work can be seen in Kitagawa and Gersch, 1996.) When a =2,
the above filter collapses to the Kalman filter. When disturbances are non-normal stable, the
integrals in equations (2a) and (2c) may be evaluated numerically. Details are given in the
Appendix.

Maximum likelihood (ML) estimates of the hyperparameters o, c,, and Cys using monthly US
inflation data for 1953:11 (October—November inflation) to 1993:9 (T =479), are given in the
first row of Table I. The estimate of the characteristic exponent o is 1-803, well below the value
of 2 for normal shocks. The estimated signal-noise scale ratio of 1:4-9 suggests a relatively
smooth trend inflation as compared to the erratic observed series at the monthly frequency.
Hessian-based asymptotic standard errors are in parentheses.

For comparison, we also estimated the above model, constraining o = 2, i.e. assuming normal
distributions for the error terms. In this case the Kalman filter was employed for estimation. The
resulting ML hyperparameters are given in the second row of Table I. The estimated scales
(which for & =2 equal standard deviation divided by ~/2) imply a first-order autocorrelation
coefficient of —0-49, and a signal-noise scale ratio c,/c, of 1 :4.38.

The likelihood ratio (LR) statistic 2A log L for the restriction o = 2 is reported in Table I to be
24-76 for Model 1. This LR test statistic does not have the usual ¥3(1) distribution, since the null
hypothesis lies on the boundary of admissible values for o and, hence, the regularity conditions
are not satisfied. However, McCulloch (1997) has tabulated small-sample critical values for such
a test by Monte Carlo simulations in the simple case when a, ¢, and & are being estimated. The
models in this paper are more complicated, but this is unlikely to greatly affect the critical values

Table 1. Estimation results

o ¢, ¢y log L 2A log L 2A log L for

Homoscedastic for normality homoscedasticity
models (a=2)p (w0, =0)°
Stable 1-803 1369 0278 —1100-78 24-76

(0-094) (0-077) (0-064)
Normal 2 1.563  0-357 —1113-16

(0-029) (0-051)

Heteroscedastic Wg W, p
models
Stable 1.830 1376 0091 0197 -1089-35 25-98 22-86

(0-053) (0-164) (0-027) (0-031)
Normal 2 1-900 0-085 0232 -—1102-34 27-64

0-187) (0:029) (0-037)

Standard errors are in parentheses.
20.005 critical value equals 6-688 for T'= 1000, and 7-664 for T =300 (McCulloch, 1997, Table 4, panel b).
50-005 critical value for the x% equals 7-879.

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 659—670 (1998)



OPTIMAL UNIVARIATE INFLATION FORECASTING 663

for testing o = 2. Based on these critical values, the LR test easily rejects normality in favour of
a < 2 at the 0-005 level of significance (critical value 7-664 for T =300, 6-688 for T = 1000),
under the homoscedastic assumption of Model 1. A Wald statistic computed from the asymptotic
standard error on « likewise does not have an asymptotic normal distribution for the null
hypothesis « =2, and indeed it greatly underpredicts the actual change in log-likelihood.

A plot of the standardized residuals (not shown) indicates neither any apparent deviation from
a zero mean process nor any trending behaviour, and the Box-Ljung test reveals no significant
residual serial correlation. The asymptotic distribution of the Box—Ljung test statistic as a ¥?
requires a finite second-moment assumption. Therefore, although the inferences from this test
hold asymptotically only in the Gaussian case, these can only be taken as suggestive when shocks
are non-normal stable.

3. LOCAL LEVEL MODEL WITH ARCH ERRORS

Although early work by Engle (1983) established that the US inflation rates were not well
described by a homoscedastic process, Cosimano and Jansen (1988) attribute Engle’s finding of
autoregressive conditional heteroscedasticity (ARCH) to a misspecification in his model. Other
work by Bollerslev (1986), Brunner and Hess (1993), Evans and Wachtel (1993), and Baillie et al.
(1996) also provides mixed evidence of conditional heteroscedasticity in this series. The evidence
on ARCH seems to be strong when the sample dataset includes the period prior to 1953, but
weaker otherwise.

We extend the homoscedastic model analysed in Section 2 by incorporating GARCH
disturbances:

Model 2
yo=x+¢ &~ 5,0, ¢) (4a)
x, =%y +1, #,~ 5,0 pc) (4b)
¢ =yt oy —EQ@,_ | Y, )"+ o6y, 0>0,0,0,20 (4c)

When errors are normal, equation (4c) reduces to the familiar GARCH-normal process. A test of
the GARCH(l,1) versus the ARCH(1) model (w, = 0) yields an LR test statistic of 0-16 when
shocks are stable, and 0-00 when shocks are normal. This is contrary to Baillie et al. (1996), but
the difference is presumably due to their inclusion of data from 1947 to 1953. Hence, we settled
on a more parsimonious ARCH(1) parameterization. A GARCH(1,1) process, with a powers as
in equation (4c), has been estimated for foreign currency returns by Liu and Brorsen (1995).
McCulloch (1985) fits a GARCH-stable model to bond returns, but using absolute values in
place of a-powers.

Results of estimating the ARCH(]) version of equation (4), both when shocks are stable and
when they are constrained to be normal, are presented in the lower panel of Table I. The results
indicate an estimate of 0-091 for w, , which is statistically significant by both the Wald and the LR
tests at conventional significance levels. The estimate of « rises to 1-830 with the introduction of
ARCH, indicating that some of the leptokurtosis can be attributed to conditional hetero-
scedasticity. However, an LR test for o =2 rejects normality more strongly now in favour of

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 659-670 (1998)
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a < 2, at better than the 0-005 level. Thus, inflation appears to display strong leptokurtosis that
is not merely a result of conditional heteroscedasticity. The estimated signal-noise scale ratio p is
now 1:5-08.

Much of the empirical work on modelling uncertainty in inflation is motivated by the
Friedman hypothesis that higher rates of trend inflation lead to higher uncertainty in future
inflation. The evidence largely seems to corroborate this hypothesis (e.g. Brunner and Hess, 1993;
Evans and Wachtel, 1993). We tested this hypothesis by alternatively specifying the conditional
scales as dependent on the trend level of inflation x,, instead of as an ARCH(1) process. Our
estimates confirmed earlier evidence that high rates of trend inflation do lead to greater
uncertainty, particularly in the variability of permanent shocks than in the variability of
temporary shocks to inflation, as suggested by Ball and Cecchetti (1990). However, such a
specification for conditional heteroscedasticity was easily dominated by the GARCH(1,1)/
ARCH(1) process, in terms of the Akaike Information Criterion (AIC).

4. EFFECTS OF NON-NORMALITY ON INFLATION FORECASTS

It can be shown that so long as o > 1/2, the filter density has finite variance for 7 > 2, despite the
infinite variances of the stable shocks. Figure 1 plots the observed inflation series along with the
filter mean from the stable ARCH model, E(x,|Y) = E(y, ;| Y), j= 1, and a two-standard
error band. The mean and the standard error are computed using the first two moments
of the posterior densities of the state variable that were evaluated at a grid of nodes by
numerical integration. Divergences between the forecasts from the stable and Gaussian models
are particularly important during two episodes, 1973—4 and 1986, which we will examine in detail
below.

In Figure 2 we plot the standard errors computed from the filter densities from the stable
ARCH model, and for comparison, for the Gaussian ARCH model, computed as if its normal
assumption were valid. Without any heteroscedasticity, the standard errors from the homo-
scedastic normal model would be constant, except for the start-up of the filter. The variation in
the computed normal standard errors that does appear after the start-up is entirely due to
conditional heteroscedasticity. The normal model standard errors, like those of a standard
Kalman filter, do not respond at all to the magnitude of the local disturbances, except indirectly
through ARCH effects. The stable model standard errors are usually smaller than those
estimated from the normal model. Thus, it ordinarily shows more precise forecasts of future
inflation, reacting to forecast errors in a similar way but at a lower level.

During unsettled periods when large outliers or regime shifts appear to have occurred,
however, the stable filter density spreads out, and, as we shall see, may even become multimodal.
During these periods, the stable forecasts appropriately have higher standard errors. Because the
normal filter density does not respond directly to the local disturbances, it must overcompensate
during quiet periods with an unnecessarily high standard error.

Figure 3 illustrates the response of the two models to one very big shock that occurred in
August 1973. The posterior densities of trend inflation from the two models are plotted from
1973:6 to 1974: 1, and the dashed vertical line indicates the actual observed inflation during a
specific month. The first two panels show that both models estimated trend inflation to be around
5-7% prior to this period. The observed seasonally adjusted inflation for August was nearly
20% —a jump of about 14 percentage points. The panels show that the Gaussian model reacts
strongly with a large shift in location (from about 6% to about 9%), whereas the stable model

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 659-670 (1998)
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simply develops a small mode far out in the tail. Observed inflation in the next period was about
1%. The stable model now loses its small new mode in the right tail completely, treating the big
shock as a clear outlier, while the Gaussian model continues to forecast over 8% inflation.
Kitagawa (1987) obtains an even more dramatic demonstration of the relative insensitivity of
non-Gaussian models to outliers, but using artificial data.

Figure 4 shows the behaviour of the two models during 1986: 1 to 1986:8 when, starting from a
period of moderate inflation of about 3-5-4-0%, three fairly large negative shocks were observed
in succession. Seasonally adjusted inflation for February, March, and April 1986 was —3-9%,
—5-8%, and —3-0%, respectively. The Gaussian model reacts sluggishly with a shift in its entire
distribution, and greatly overpredicts inflation during these three months. On the other hand, the
stable model develops a very small mode at the first shock, which builds into a bigger mode at the
second shock (while retaining the old mode). With the third shock, however, the stable model
has adapted (and more than the normal model) to what it perceives as a level shift, with most of
the probability mass now concentrated close to the newly observed inflation. However, it still has
a smaller mode back near the old mode, just in case these are just three unusual draws of big
observation errors in succession. The following realizations suggest that this, in fact, was true,
and the stable model is quick to revert back to the old mode, whereas the normal model is
slower to react. By August of 1986, both models settle down on an estimate of about 2% trend
inflation.

Thus, these two sets of figures illustrate two important differences in the behaviour of thick-
tailed (stable) and Gaussian processes. First, when faced with occasional big shocks the Gaussian
model reacts strongly with a large jump in the mean, whereas the stable model largely ignores
these, treating them instead as probable outliers. Second, when consecutive shocks of similar
magnitude are encountered the normal model is very sluggish in fully adapting, whereas the
stable model infers that the regime has changed more quickly. A further fact that emerges is that,
during such episodes, the stable model more realistically gives higher estimates of uncertainty
associated with trend inflation. This is understandable since the stable model usually develops
bimodal densities reflecting greater uncertainty during these confusing periods, whereas the
normal model does not.

Abstracting from heteroscedasticity and start-up considerations, the Gaussian Kalman filter
density is always normal, with a constant estimated standard error, and adapts linearly to new
information. Stuck (1978) and Rutkowski (1994) find the optimal stable filter within the linear
class for discrete time processes. Similarly, Le Breton and Musiela (1993) generalize the Kalman
filter to continuous time processes with and without infinite variance errors. However, the mean
of the globally optimal filter does not revise linearly, unless shocks are truly Gaussian.

The level of future inflation, as implied by the local level model, is:

J
Yryj =Xr+ ZﬂT+i Tt ery; (5a)

i=1

In the homoscedastic Model 1, the stability property of the # and & shocks implies that
Ory— XD~ 8,0, ¢) where ¢;= ey + ¢!, Since x4 is unobserved and has to be estimated,
the forecast density of future inflation is obtained by convoluting S,(0, cj) with the filter density
of xr. Thus, ¢ provides a lower bound on the uncertainty associated with forecasting future
inflation. For large values of j, ¢; is approximately jl/"‘cn, and the contribution of the filter density
is small.

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 659-670 (1998)
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Similarly, the future price level, In(py. +j), is given by

j i J
In(pry,) = I(pr) +jxr + ) ) Arse+ D re (5b)
i=1 k=1 i=1
J J
= In(pp) +Jxr + DG =k + Digy + ) er (5¢)

k=1 i=1
The stability property of the errors again implies that
{ln(pT.H') - 1n(pT) _'ij} ~ Sa(o, Cj)

where C;={[* +( — 1)*+- - -+ 1l + jc#}!=. Once again, this density needs to be convoluted
with theé filter density of jx, in order to obtain the forecast density of the future price level. For
large values of j, C; behaves approximately like {**+D/(o + 1)}V2c, , while the scale of jx; grows
only in proportion to j.

For Model 2, the exact forecasting uncertainty can only be found by a series of convolutions,
taking the heteroscedasticity into account. Nevertheless, it may be expected that the above
formulae, using the Model 1 estimated parameters, give a rough approximation of the true
forecasting uncertainty.

5. CONCLUSIONS AND EXTENSIONS

The present paper simulates historical US inflation forecasts, conditional on the observed
inflation series, using a state space model with symmetric stable disturbances. The model is
estimated using the non-linear filtering algorithm of Sorenson and Alspach. Even after adjusting
for conditional heteroscedasticity, normality is strongly rejected in favour of stable distributions
with characteristic exponent o equal to 1-83. The mean of the filter density for trend inflation is
the optimal univariate forecast of future inflation, under the postulated local level model.

The methods used in this paper can readily be extended to other stationary or non-stationary
time series that exhibit leptokurtosis, such as stock returns, real income growth, and real interest
rates (see Bidarkota, 1996; Bidarkota and McCulloch, 1996; Balke and Fomby, 1994; Blanchard
and Watson, 1986). Kitagawa (1987) develops a recursive formula for the smoother density
p(x,| Yp), which may be useful in these contexts. The present study focuses on simulated inflation
forecasts, and therefore does not compute the Kitagawa smoother.

Numerical integration of the Sorenson—Alspach filtering equations works best when the
dimension of the state vector is small. However, for estimating models with additional explanat-
ory variables, such as money supplies, interest rates, unemployment, etc., and therefore more
dimensions, Monte Carlo integration and other procedures proposed by Kitagawa (1996) (see
Kitagawa and Gersch, 1996) are promising.

APPENDIX: NUMERICAL INTEGRATION OF THE RECURSIVE
FILTERING ALGORITHM

The Sorenson—Alspach filter and predictive densities were evaluated at a grid of 100 points
equally spaced on a truncated portion of the real line. The left truncation point was chosen to lie
four standard deviations (of the & shock as measured by a preliminary Kalman filter) below the

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 659670 (1998)
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minimum observed inflation rate (i.e. at —18-0%) and the right truncation point four standard
deviations above the maximum observed inflation (i.e. at 32:0%). The likelihood and the
predictive density integrals (equations (2c) and (2a) respectively) were evaluated numerically by a
piecewise cubic quadrature technique, as follows. Integration between any two interior nodes was
performed by fitting a piecewise cubic function through the four nearest nodes, and approxi-
mating the required area under the integrand between those nodes by the area under the cubic.
The outermost intervals employ the same cubics as the adjacent intervals. For equispaced nodes,
eight or more in number, this quadrature procedure yields the weights 8/24, 31/24, 20/24, 25/24,
1, 1,..., 1, 25/24, 20/24, 31/24, 8/24 for the ordinates. The numerically computed predictive
density was normalized at each step in order to ensure that it integrated to unity. The piecewise
linear interpolation and the trapezoidal rule for integration suggested by Kitagawa (1987) was
not employed. Hodges and Hale (1993) propose an integration by parts procedure to speed up
the Kitagawa technique, but this was not used either.

The filter is initialized by the diffuse prior, since we assume that the process is non-stationary,
ie p(x | Y) =5,0015 X5 (X)) where s5,(x; 0, c) is the symmetric stable density. Starting points
for the hyperparameter estimation are obtained from the Kalman filter under normality.

The accuracy of our numerical quadrature can be gauged by a comparison of the log-likelihood
value obtained from our numerical integration with o restricted to be 2, with that obtained from
the Kalman filter, for given values of the other hyperparameters. We verified that with 100 nodes
our numerical approximation gives log-likelihood values accurate to within 0-001 at the estimated
hyperparameters of the Gaussian Model 1. In the light of this, our numerical integration appears
to be sufficiently accurate for drawing valid inferences from data. Figures 3 and 4 are constructed
by linearly connecting the estimated densities at the computed nodes.
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